cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268268 a(n) begins the first chain of 7 consecutive positive integers of h-values with symmetrical gaps about the center, where h(k) is the length of the finite sequence k, f(k), f(f(k)), ..., 1 in the Collatz (or 3x + 1) problem.

Original entry on oeis.org

943, 1377, 1494, 1495, 1680, 1681, 1682, 1991, 1992, 1993, 2358, 2359, 2987, 2988, 2989, 2990, 2991, 2992, 2993, 2994, 3288, 3289, 3360, 3542, 3543, 3982, 3983, 3984, 3985, 3986, 3987, 3988, 4193, 4481, 4482, 4722, 4723, 4724, 4725, 4897, 4936, 4937, 5313, 5314
Offset: 1

Views

Author

Michel Lagneau, Jan 29 2016

Keywords

Comments

Or numbers k such that h(k) + h(k+6) = h(k+1) + h(k+5) and h(k+3) = (h(k) + h(k+6))/2, where h(k) is the length of k, f(k), f(f(k)), ..., 1 in the Collatz (or 3x + 1) problem.
a(1) = A078441(7).
The symmetry can be seen from the differences between consecutive h(k) (see the example).
The 7-tuple of consecutive h(k) are symmetric about the central value h(k+3) which are averages of both their immediate neighbors, their second neighbors and their third neighbors.
A majority of numbers of the sequence generate trivial 7-tuples {m, m, m, m, m, m, m}.
The 7-tuples {h(k)} of the form {m, p, p, p, p, p, q} are generated by the numbers of the sequence 1377, 4897, ...
The 7-tuples {h(k)} of the form {m, m, p, m, q, m, m} are generated by the numbers of the sequence 5511, 58757, ...
The 7-tuples {h(k)} of the form {m, p, m, m, m, q, p} are generated by the numbers of the sequence 9514, ...
The 7-tuples {h(k)} of the form {m, m, p, p, p, q, q} are generated by the numbers of the sequence 21442, 25666, ...
The 7-tuples {h(k)} of the form {m, m, m, p, q, q, q} are generated by the numbers of the sequence 55108, 55293, ...

Examples

			In 7-tuple of consecutive {h(k)}: {h(9514),h(9515),h(9516),h(9517),h(9518),h(9519),h(9520)} = {78,52,78,78,78,104,78}, the central value is 78, and 78+78 = 52+104 = 2*78. Hence, 9514 is in the sequence.
Alternatively, the symmetry can be seen from the differences between consecutive {h(k)}. For {78,52,78,78,78,104,78}, the differences {h(k+1)-h(k)} are {-26,26,0,0,26,-26}.
		

Crossrefs

Programs

  • Mathematica
    lst={};f[n_]:=Module[{a=n,k=0},While[a!=1,k++;If[EvenQ[a],a=a/2,a=a*3+1]];k];Do[If[f[m]+f[m+6]==f[m+1]+f[m+5]&&f[m+2]+f[m+4]==f[m]+f[m+6]&& f[m]+f[m+6]==f[m+2]+f[m+4]&&f[m+3]==(f[m]+f[m+6])/2,AppendTo[lst,m]],{m,1,6000}];lst