A353063 Irregular triangle T(n,k) read by rows: Coefficients for the ordinary generating function of A014682^n as sum of partial fractions (up to one factor x); ^n means n iterations into the Collatz function.
1, 1, 1, 1, -3, 1, -3, 1, 1, 1, 3, -3, -9, 1, 13, -3, 9, 1, 1, 1, 1, 1, -9, 3, -9, -3, -3, -9, -27, 1, -15, 13, 13, -3, -3, 9, -27, 1, -19, 1, 13, 1, 1, 1, 1, 1, 9, -9, -9, 3, 3, -9, 27, -3, 27, -3, -27, -9, -9, -27, -81, 1, 49, -15, -15, 13, 13, 13, 121, -3, 109, -3, 33
Offset: 1
Examples
Written as an irregular triangle T(n,k): n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... 1 1, 1 2 1, 1, -3, 1 3 -3, 1, 1, 1, 3, -3, -9, 1 4 13, -3, 9, 1, 1, 1, 1, 1, -9, 3, -9, -3, -3, -9,-27, 1 . The ordinary generating function of A014682(y) is: x*( 1/4 /(1 - x) | n*(1/4)/(1 - x), n = 1 + 1/(1 - x)^2 + 1/4 /(1 + x) | (T(1,1)/4)/(1 + x^(2^(k-1))), k = 1 + 1/2 /(1 + x)^2) | (T(1,2)/2)/(1 + x^(2^(k-1)))^2 ), k = 1. The ordinary generating function of A014682(A014682(y)) is: x*( 1/2 /(1 - x) | n*(1/4)/(1 - x), n = 2 + 1/(1 - x)^2 + 1/4 /(1 + x) | (T(1,1)/4)/(1 + x^(2^(k-1))), k = 1 + 1/2 /(1 + x)^2 | (T(1,2)/2)/(1 + x^(2^(k-1)))^2 ), k = 1 + (1/4 + 1/4*x)/(1 + x^2) | ((T(2,1) + T(2,2))/4)/(1 + x^(2^(k-1))), k = 2 + (-3/2 + 1/2*x)/(1 + x^2)^2)| ((T(2,3) + T(2,4))/2)/(1 + x^(2^(k-1)))^2 ), k = 2. The ordinary generating function of A014682(A014682(A014682(y))) is: x*( 3/4 /(1 - x) + 1/(1 - x)^2 + 1/4 /(1 + x) + 1/2 /(1 + x)^2 + (1/4 + 1/4*x)/(1 + x^2) + (-3/2 + 1/2*x)/(1 + x^2)^2 + (-3/4 + 1/4*x + 1/4*x^2 + 1/4*x^3)/(1 + x^4) + (3/2 - 3/2*x - 9/2*x^2 + 1/2*x^3)/(1 + x^4)^2).
Links
Programs
-
MATLAB
function a = A353063( max_n ) a = cell(0); a{1} = [1 1]; for n = 2:max_n row = zeros(1,2^n); % T(n, 2*k) = T(n-1, k) row(2.*[1:2^(n-1)]) = a{n-1}; j = 2.*[1:2^(n-2)]-1; m = mod((j*3+1)/2,2^(n-2)); f = floor(((j*3+1)/2)/2^(n-2)); f2 = f; f2(m==0) = f(m==0)-1; % T(n, 2^(n-1) + 2*k - 1) = 3*T(n-1, 2^(n-2) % + (((3*k + 1)/2) mod 2^(n-2)))) % *(-1)^floor(((3*k + 1)/2) / (2^(n-2) + (1/2))) row(2^(n-1) + j) = 3*a{n-1}(2^(n-2) + m).*(-1).^f2; m(m==0) = 2^(n-2); % T(n, 2*k - 1) = -(2*(2-f(k))*abs(T(n-1, 2^(n-2) + m(k))) % + abs(T(n-1, m(k))))*signum(T(n, 2^(n-1) + 2*k - 1)) row(j) = (2*(2-f).*abs(a{n-1}(2^(n-2) + m))+abs(a{n-1}(m)))... .*(-1*sign(row(2^(n-1) + j))); a{n} = row; end end
Formula
The ordinary generating function of A014682^n(y):
x*(n*(1/4)/(1 - x) + 1/(1 - x)^2 + Sum_{k=1..n} ( Sum_{j=1..2^(n-1)} ( T(k, j)/4 / (1 + x^(2^(k-1))) ) + Sum_{m=1..2^(n-1)} ( T(k, 2^(n-1) + m)/2 / (1 + x^(2^(k-1)))^2 ) ) ).
x*((1/4)/(1 - x) + Sum_{j=1..2^(n-1)} ( T(n, j)/4 / (1 + x^(2^(n-1))) ) + Sum_{m=1..2^(n-1)} ( T(n, 2^(n-1) + m)/2 / (1 + x^(2^(n-1)))^2 )).
T(n, 2^(n-1)) = 1.
T(n, 2^n) = 1.
T(n, 2^n-1) = -(3^(n-1)), for n > 1.
T(n, 2^c*k) = T(n-c, k) for n > c.
T(n, 2^(n-1) + 2*k - 1) = 3*T(n-1, 2^(n-2) + (((3*k + 1)/2) mod 2^(n-2))))*(-1)^floor(((3*k + 1)/2) / (2^(n-2) + (1/2))), for n > 1 and 0 < k <= 2^(n-2).
T(n, 2*k - 1) = -(2*(2-f(k,n))*abs(T(n-1, 2^(n-2) + m(k,n))) + abs(T(n-1, m(k,n))))*signum(T(n, 2^(n-1) + 2*k - 1)), for n > 1 and 0 < k <= 2^(n-2). f(k,n) = floor(((3*k + 1)/2) / (2^(n-2))), m(k,n) = ((3*k + 1)/2) mod 2^(n-2)) with the exception that if m(k,n) = 0, we add 2^(n-2) to the result.
Abs(T(n, 2^(n-1) + k)) = 3^A339694(n-1, k+1), for k < 2^(n-1) - 1.
Sum_{k=1..n} abs(T(n, 2^(n-1) + k)) = 2^(2*(n-1)).
Sum_{k=1..n} log_3(abs(T(n, 2^(n-1) + k)) = A001787(n-1).
n - 1 is the number of k where abs(T(n, 2^(n-1) + k)) = 3 for k = 1..2^(n-1).
A268292(n + 3) is the number of k where abs(T(n, k)) > 12 and abs(T(n, 2^(n-1) + k)) = 9 for k = 1..2^(n-1).
Comments