A268299
G.f. A(x) satisfies: -1 = Product_{n>=1} (1 - A(x)^n) * (1 - A(x)^n/x) * (1 - A(x)^(n-1)*x).
Original entry on oeis.org
2, 7, 84, 1240, 20942, 382344, 7354688, 146810440, 3012778758, 63167322872, 1347251937632, 29138746861200, 637584335364362, 14088532800477752, 313936020646727040, 7046500093908958288, 159171390375064583380, 3615669944253537267048, 82541551931101193203004, 1892725670848222011475776, 43575217427267416453289838, 1006843304895182755611475824, 23340548167572913996786290328
Offset: 1
G.f.: A(x) = 2*x + 7*x^2 + 84*x^3 + 1240*x^4 + 20942*x^5 + 382344*x^6 + 7354688*x^7 + 146810440*x^8 + 3012778758*x^9 + 63167322872*x^10 +...
where A(x) satisfies the Jacobi Triple Product:
-1 = (1-A(x))*(1-A(x)/x)*(1-x) * (1-A(x)^2)*(1-A(x)^2/x)*(1-A(x)*x) * (1-A(x)^3)*(1-A(x)^3/x)*(1-A(x)^2*x) * (1-A(x)^4)*(1-A(x)^4/x)*(1-A(x)^3*x) * (1-A(x)^5)*(1-A(x)^5/x)*(1-A(x)^4*x) * (1-A(x)^6)*(1-A(x)^6/x)*(1-A(x)^5*x) +...
also
1/x = (1-A(x))*(1-A(x)*x)*(1-1/x) * (1-A(x)^2)*(1-A(x)^2*x)*(1-A(x)/x) * (1-A(x)^3)*(1-A(x)^3*x)*(1-A(x)^2/x) * (1-A(x)^4)*(1-A(x)^4*x)*(1-A(x)^3/x) * (1-A(x)^5)*(1-A(x)^5*x)*(1-A(x)^4/x) * (1-A(x)^6)*(1-A(x)^6*x)*(1-A(x)^5/x) *...
further,
-1 = (1-x) - A(x)*(1-x^3)/x + A(x)^3*(1-x^5)/x^2 - A(x)^6*(1-x^7)/x^3 + A(x)^10*(1-x^9)/x^4 - A(x)^15*(1-x^11)/x^5 + A(x)^21*(1-x^13)/x^6 +...
RELATED SERIES.
The series reversion of g.f. A(x) equals x*Q(x), where Q(x) begins:
Q(x) = 1/2 - 7/2*x/4 - 70/2*x^2/4^2 - 795/2*x^3/4^3 - 13802/2*x^4/4^4 - 277782/2*x^5/4^5 - 6093708/2*x^6/4^6 - 139376659/2*x^7/4^7 - 3297234754/2*x^8/4^8 - 79988099074/2*x^9/4^9 - 1979248977748/2*x^10/4^10 +...+ A268301(n)/2*x^n/4^n +...
and where Q(x) satisfies the Jacobi Triple Product:
-1 = (1-x)*(1-x*Q(x))*(1-1/Q(x)) * (1-x^2)*(1-x^2*Q(x))*(1-x/Q(x)) * (1-x^3)*(1-x^3*Q(x))*(1-x^2/Q(x)) * (1-x^4)*(1-x^4*Q(x))*(1-x^3/Q(x)) * (1-x^5)*(1-x^5*Q(x))*(1-x^4/Q(x)) * (1-x^6)*(1-x^6*Q(x))*(1-x^5/Q(x)) *...
-
(* Calculation of constant d: *) 1/r /. FindRoot[{r*QPochhammer[1/r, s]*QPochhammer[r, s]* QPochhammer[s, s] == 1 - r, (Log[1 - s] + QPolyGamma[0, 1, s])/(s*Log[s]) - Derivative[0, 1][QPochhammer][1/r, s]/QPochhammer[1/r, s] - Derivative[0, 1][QPochhammer][r, s]/QPochhammer[r, s] - Derivative[0, 1][QPochhammer][s, s]/ QPochhammer[s, s] == 0}, {r, 1/24}, {s, 1/8}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 30 2023 *)
-
{a(n) = my(Q=1/2, t=floor(sqrt(2*n+1)+1/2)); for(i=0, n, Q = (Q + sum(m=-t, t, x^(m*(m-1)/2) * (-Q)^m +x*O(x^n)) )/2 ); polcoeff(serreverse(x*Q), n)}
for(n=1, 30, print1(a(n), ", "))
A268300
G.f. satisfies: -1 = Product_{n>=1} (1-x^n) * (1 - x^n/A(x)) * (1 - x^(n-1)*A(x)), where g.f. A(x) = Sum_{n>=0} a(n)*2*(x/4)^n.
Original entry on oeis.org
1, 7, 119, 2118, 42523, 914922, 20745494, 487390092, 11764545555, 289962708802, 7267069560834, 184626340341588, 4744080078088734, 123075608359376932, 3219261610951795084, 84806249132678044440, 2248017950109054256899, 59917503707743905031346, 1604813748929693765997450, 43170742498490205711682564, 1165893490887496323343495146, 31598783791475055433157814444, 859179326846115018832395000820
Offset: 0
G.f.: A(x) = 2 + 7*2*x/4 + 119*2*x^2/4^2 + 2118*2*x^3/4^3 + 42523*2*x^4/4^4 + 914922*2*x^5/4^5 + 20745494*2*x^6/4^6 + 487390092*2*x^7/4^7 + 11764545555*2*x^8/4^8 + 289962708802*2*x^9/4^9 + 7267069560834*2*x^10/4^10 +...
where g.f. A(x) satisfies the Jacobi Triple Product:
-1 = (1-x)*(1-x/A(x))*(1-A(x)) * (1-x^2)*(1-x^2/A(x))*(1-x*A(x)) * (1-x^3)*(1-x^3/A(x))*(1-x^2*A(x)) * (1-x^4)*(1-x^4/A(x))*(1-x^3*A(x)) * (1-x^5)*(1-x^5/A(x))*(1-x^4*A(x)) * (1-x^6)*(1-x^6/A(x))*(1-x^5*A(x)) *...
also
A(x) = 1/((1-x)*(1-x*A(x))*(1-1/A(x)) * (1-x^2)*(1-x^2*A(x))*(1-x/A(x)) * (1-x^3)*(1-x^3*A(x))*(1-x^2/A(x)) * (1-x^4)*(1-x^4*A(x))*(1-x^3/A(x)) * (1-x^5)*(1-x^5*A(x))*(1-x^4/A(x)) * (1-x^6)*(1-x^6*A(x))*(1-x^5/A(x)) *...).
RELATED SERIES.
1/A(x) = 1/2 - 7/2*x/4 - 70/2*x^2/4^2 - 795/2*x^3/4^3 - 13802/2*x^4/4^4 - 277782/2*x^5/4^5 - 6093708/2*x^6/4^6 - 139376659/2*x^7/4^7 - 3297234754/2*x^8/4^8 - 79988099074/2*x^9/4^9 +...+ A268301(n)/2*x^n/4^n +...
Series_Reversion( x/A(x) ) = 2*x + 7*x^2 + 84*x^3 + 1240*x^4 + 20942*x^5 + 382344*x^6 + 7354688*x^7 + 146810440*x^8 + 3012778758*x^9 + 63167322872*x^10 +...+ A268299(n)*x^n +..., an integer series.
Let J(x) = Sum_{n>=1} x^(n*(n-1)/2) * (A(x)^n + 1/A(x)^(n-1)),
then J(x) is an integer series:
J(x) = 3 + 8*x + 28*x^2 + 144*x^3 + 736*x^4 + 4024*x^5 + 22912*x^6 + 134784*x^7 + 813476*x^8 + 5010904*x^9 + 31379808*x^10 +..+ A268302(n)*x^n +...
and J(x) = Product_{n>=1} (1-x^n) * (1 + x^n/A(x)) * (1 + x^(n-1)*A(x)).
Conjecture: Product_{n>=1} (1-x^n) * (1 + k*x^n/A(x)) * (1 + k*x^(n-1)*A(x)) yields an integer series for all integer k.
-
(* Calculation of constants {d,c}: *) {4/r, 1/(2*Sqrt[2*Pi]) * Sqrt[(r*s^4* Log[r]*(((-1 + s)*(-1 + r*s) * QPolyGamma[0, 1, r])/(r*s^2) - ((-1 + s)*(-1 + r*s)*Log[r] * Derivative[0, 1][QPochhammer][r, r])/(s^2 * QPochhammer[r, r]) + r*Log[r]*QPochhammer[r, r]*QPochhammer[s, r] * Derivative[0, 1][QPochhammer][1/(r*s), r] + ((-1 + s)*(QPochhammer[s, r]*(Log[r] + (1 - r*s)* QPolyGamma[0, -Log[r*s]/Log[r], r]) + r*(1 - r*s)*Log[r]* Derivative[0, 1][QPochhammer][s, r]))/(r*s^2 * QPochhammer[s, r]))) / (2*Log[r]^2 + (-3 + s*(1 + r + r*s)) * Log[r] * QPolyGamma[0, Log[s]/Log[r], r] + (-1 + s)*(-1 + r*s) * QPolyGamma[0, Log[s]/Log[r], r]^2 + ((3 - s*(1 + r + r*s))*Log[r] - 2*(-1 + s)*(-1 + r*s) * QPolyGamma[0, Log[s]/Log[r], r]) * QPolyGamma[0, -Log[r*s]/Log[r], r] + (-1 + s)*(-1 + r*s) * QPolyGamma[0, -Log[r*s]/Log[r], r]^2 + (-1 + s)*(-1 + r*s)* QPolyGamma[1, Log[s]/Log[r], r] + (-1 + s)*(-1 + r*s)* QPolyGamma[1, -Log[r*s]/Log[r], r])]} /. FindRoot[{(1 - 1/(r*s))*(1 - s)/(QPochhammer[r] * QPochhammer[1/(r*s), r] * QPochhammer[s, r]) == s, (-2 + s + r*s)*Log[r] + (-1 + s)*(-1 + r*s)*(QPolyGamma[0, Log[s]/Log[r], r] - QPolyGamma[0, -Log[r*s]/Log[r], r]) == 0}, {r, 1/7}, {s, 4}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Jan 19 2024 *)
-
{a(n) = my(A=2+x,t=floor(sqrt(2*n+1)+1/2)); for(i=0,n, A = (A + 1/sum(m=-t,t, x^(m*(m+1)/2) * (-A)^m +x*O(x^n)) )/2 ); 4^n/2 * polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A268302
G.f.: Sum_{n>=1} x^(n*(n-1)/2) * (G(x)^n + 1/G(x)^(n-1)), where G(x) is the g.f. of A268300.
Original entry on oeis.org
3, 8, 28, 144, 736, 4024, 22912, 134784, 813476, 5010904, 31379808, 199196320, 1278911808, 8290414024, 54186864896, 356711621984, 2362968349568, 15739688709864, 105357470567228, 708338644347808, 4781146692837856, 32387329985982176, 220104493513881920, 1500273861724289984, 10253983269166864256, 70258772726034956688, 482514972838806347776, 3320848006096569464080, 22900703924095461843008, 158216154716853989543080
Offset: 0
G.f.: A(x) = 3 + 8*x + 28*x^2 + 144*x^3 + 736*x^4 + 4024*x^5 + 22912*x^6 + 134784*x^7 + 813476*x^8 + 5010904*x^9 + 31379808*x^10 +...
such that
A(x) = Sum_{n>=1} x^(n*(n-1)/2) * (G(x)^n + 1/G(x)^(n-1)),
that is,
A(x) = (G(x) + 1) + x*(G(x)^2 + 1/G(x)) + x^3*(G(x)^3 + 1/G(x)^2) + x^6*(G(x)^4 + 1/G(x)^3) + x^10*(G(x)^5 + 1/G(x)^4) + x^15*(G(x)^6 + 1/G(x)^5) +...,
where
G(x) = 2 + 7*2*x/4 + 119*2*x^2/4^2 + 2118*2*x^3/4^3 + 42523*2*x^4/4^4 + 914922*2*x^5/4^5 + 20745494*2*x^6/4^6 + 487390092*2*x^7/4^7 + 11764545555*2*x^8/4^8 + 289962708802*2*x^9/4^9 +...+ A268300(n)*2*x^n/4^n +...
satisfies:
-1 = Product_{n>=1} (1-x^n) * (1 - x^n/G(x)) * (1 - x^(n-1)*G(x)).
Showing 1-3 of 3 results.
Comments