cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268304 Odd numbers n such that binomial(6*n, 2*n) == -1 (mod 8).

Original entry on oeis.org

1, 5, 21, 73, 85, 273, 293, 297, 329, 341, 529, 545, 1041, 1057, 1089, 1093, 1105, 1173, 1189, 1193, 1297, 1317, 1321, 1353, 1365, 2065, 2081, 2113, 2117, 2129, 2177, 2181, 2209, 2577, 2593, 4113, 4129, 4161, 4165, 4177, 4225, 4229, 4257, 4353, 4357, 4373, 4417, 4421, 4433
Offset: 1

Views

Author

Michel Marcus, Jan 31 2016

Keywords

Comments

The primes p of this sequence are those that give the even semiprimes of A268303.

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 5000, 2], Mod[Binomial[6 #, 2 #], 8] == 7 &] (* Michael De Vlieger, Feb 07 2016 *)
  • PARI
    isok(n) = (n%2) && Mod(binomial(6*n, 2*n), 8) == Mod(-1, 8);
    
  • Python
    from _future_ import division
    A268304_list, b, m1, m2 = [], 15, [21941965946880, -54854914867200, 49244258396160, -19011472727040, 2933960577120, -126898662960, 771887070, 385943535, 385945560],  [10569646080, -25763512320, 22419210240, -8309145600, 1209116160, -46992960, 415800, 311850, 311850]
    for n in range(10**3):
        if b % 8 == 7:
            A268304_list.append(2*n+1)
        b = b*m1[-1]//m2[-1]
        for i in range(8):
            m1[i+1] += m1[i]
            m2[i+1] += m2[i] # Chai Wah Wu, Feb 05 2016