A268309 Number of n X n symmetric matrices with nonnegative integer entries and without zero rows or columns such that the sum of all entries is equal to n^2.
1, 1, 7, 347, 83785, 85813461, 362302219609, 6227015262941276, 433865390872310453097, 122285854086662347886884837, 139236232279790897112737794283927, 639720298831885406784643598607618757713, 11848024220605180271987429760766015754937928643
Offset: 0
Keywords
Examples
a(2) = 7: [1 1] [2 1] [0 1] [2 0] [0 2] [3 0] [1 0] [1 1] [1 0] [1 2] [0 2] [2 0] [0 1] [0 3].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..45
Programs
-
Maple
gf:= k-> 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)): A:= (n, k)-> coeff(series(gf(k), x, n+1), x, n): a:= n-> add(A(n^2, n-j)*(-1)^j*binomial(n, j), j=0..n): seq(a(n), n=0..15);
-
Mathematica
gf[k_] := 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)); A[n_, k_] := SeriesCoefficient[ gf[k], {x, 0, n}]; a[n_] := Sum[A[n^2, n-j]*(-1)^j*Binomial[n, j], {j, 0, n}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Feb 25 2017, translated from Maple *)
Formula
a(n) = A138177(n^2,n).