A269845 Irregular triangle read by rows: T(n,k) = (k/2+1/2)^2 if odd-k otherwise T(n,k) = (n-k/2)^2 where n >= 1, k = 0..2*n-1.
1, 1, 4, 1, 1, 4, 9, 1, 4, 4, 1, 9, 16, 1, 9, 4, 4, 9, 1, 16, 25, 1, 16, 4, 9, 9, 4, 16, 1, 25, 36, 1, 25, 4, 16, 9, 9, 16, 4, 25, 1, 36, 49, 1, 36, 4, 25, 9, 16, 16, 9, 25, 4, 36, 1, 49, 64, 1, 49, 4, 36, 9, 25, 16, 16, 25, 9, 36, 4, 49, 1, 64, 81, 1, 64, 4, 49, 9, 36, 16, 25, 25, 16, 36, 9, 49, 4, 64, 1, 81, 100, 1, 81, 4, 64, 9, 49, 16, 36, 25, 25, 36, 16, 49
Offset: 1
Examples
Irregular triangle begins: n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 1 1, 1 2 4, 1, 1, 4 3 9, 1, 4, 4, 1, 9 4 16, 1, 9, 4, 4, 9, 1, 16 5 25, 1, 16, 4, 9, 9, 4, 16, 1, 25 6 36, 1, 25, 4, 16, 9, 9, 16, 4, 25, 1, 36 7 49, 1, 36, 4, 25, 9, 16, 16, 9, 25, 4, 36, 1, 49 8 64, 1, 49, 4, 36, 9, 25, 16, 16, 25, 9, 36, 4, 49, 1, 64 ...
Links
- Kival Ngaokrajang, Illustration of initial terms, Row sum
Programs
-
Mathematica
Table[If[OddQ@ k, (k/2 + 1/2)^2, (n - k/2)^2], {n, 8}, {k, 0, 2 n - 1}] // Flatten (* Michael De Vlieger, Apr 01 2016 *)
-
PARI
for (n = 1, 20, for (k = 0, 2*n-1, if (Mod(k,2)==0, t = (n-k/2)^2, t = (k/2+1/2)^2); print1(t, ", ")))
Formula
T(n,k) = (k/2+1/2)^2 if odd-k, T(n,k) = (n-k/2)^2 if even-k; n >= 1, k = 0..2*n-1.
Comments