A268329 Expansion of (1 - sqrt(1 - 4*x))^5/16.
2, 10, 40, 150, 550, 2002, 7280, 26520, 96900, 355300, 1307504, 4828850, 17895150, 66533250, 248124000, 927983760, 3479939100, 13082337900, 49295766000, 186156379500, 704415740028, 2670587146260, 10142836030240, 38586876202000, 147029304149000
Offset: 5
Keywords
Links
- Ran Pan, Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
Programs
-
Mathematica
Table[10 Binomial[2 n - 6, n - 5]/n, {n, 5, 29}] (* or *) Table[SeriesCoefficient[(1 - Sqrt[1 - 4 x])^5/16, {x, 0, n}], {n, 5, 29}] (* Michael De Vlieger, Feb 17 2016 *)
Formula
G.f.: (1 - sqrt(1 - 4*x))^5/16.
a(n) = 10 * binomial(2n-6,n-5)/n.
a(n) = 2*A000344(n-3). - R. J. Mathar, Feb 17 2016
D-finite with recurrence: n*(n-5)*a(n) -2*(n-3)*(2*n-7)*a(n-1)=0. - R. J. Mathar, Feb 17 2016
Comments