A268337 Numbers which have only digits 0 and 1 in bases 3 and 5.
0, 1, 30, 31, 756, 3250, 3276, 3280, 81255, 81256, 81280, 81900, 81901, 82000, 59078250, 59078251, 59078280, 59078281, 31789468750, 31789468776, 31789469505, 31789469506, 31789471900, 31789471905, 31789471906, 31789472005, 946095722031, 946095800025, 946095800026, 946095800031, 946095800130
Offset: 1
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (first 84 terms from M. F. Hasler, next 31 terms from Charles R Greathouse IV)
- M. F. Hasler, Terms in base 10, 5 and 3.
Programs
-
Maple
d:= 20: # to get all terms < 5^d res:= NULL: T:= combinat:-cartprod([[$0..1]$d]): while not T[finished] do r:= T[nextvalue](); v:= add(r[i]*5^(d-i),i=1..d); if max(convert(v,base,3)) <= 1 then res:= res,v fi od: res; # Robert Israel, Feb 01 2016
-
Mathematica
Module[{t=Tuples[{0,1},25],b3,b5},b3=FromDigits[#,3]&/@t;b5=FromDigits[ #,5]&/@t;Intersection[b3,b5]] (* The program generates the first 26 terms of the sequence. *) (* Harvey P. Dale, Dec 13 2021 *)
-
PARI
print1(0);for(n=1,1e10,vecmax(digits(t=subst(Pol(binary(n)),'x,5),3))<2&&print1(","t))
-
PARI
list(lim)=my(v=List([0]),d=digits(lim\1,5),t); for(i=1,#d, if(d[i]>1, for(j=i,#d, d[j]=1); break)); for(n=1,fromdigits(d,5), t=fromdigits(binary(n),5); if(vecmax(digits(t,3))<2, listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Feb 02 2016
Formula
a(n) >> n^k with k = log 5/log 2 = 2.321928.... - Charles R Greathouse IV, Feb 02 2016
Comments