cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268337 Numbers which have only digits 0 and 1 in bases 3 and 5.

Original entry on oeis.org

0, 1, 30, 31, 756, 3250, 3276, 3280, 81255, 81256, 81280, 81900, 81901, 82000, 59078250, 59078251, 59078280, 59078281, 31789468750, 31789468776, 31789469505, 31789469506, 31789471900, 31789471905, 31789471906, 31789472005, 946095722031, 946095800025, 946095800026, 946095800031, 946095800130
Offset: 1

Views

Author

M. F. Hasler, Feb 01 2016

Keywords

Comments

The number 82000 is famous for having only digits 0 and 1 in all bases <= 5, no other such number > 1 is known. See also A146025 and A258981.
If explicit formulas for (convenient) infinite subsequences of this one can be found, this could open new ways to progress on this problem.
The terms come in groups having roughly the first half (or at least third) of digits in common, see the link "Terms in base 10, 5 and 3".

Crossrefs

Programs

  • Maple
    d:= 20: # to get all terms < 5^d
    res:= NULL:
    T:= combinat:-cartprod([[$0..1]$d]):
    while not T[finished] do
      r:= T[nextvalue]();
      v:= add(r[i]*5^(d-i),i=1..d);
      if max(convert(v,base,3)) <= 1 then
        res:= res,v
      fi
    od:
    res; # Robert Israel, Feb 01 2016
  • Mathematica
    Module[{t=Tuples[{0,1},25],b3,b5},b3=FromDigits[#,3]&/@t;b5=FromDigits[ #,5]&/@t;Intersection[b3,b5]] (* The program generates the first 26 terms of the sequence. *) (* Harvey P. Dale, Dec 13 2021 *)
  • PARI
    print1(0);for(n=1,1e10,vecmax(digits(t=subst(Pol(binary(n)),'x,5),3))<2&&print1(","t))
    
  • PARI
    list(lim)=my(v=List([0]),d=digits(lim\1,5),t); for(i=1,#d, if(d[i]>1, for(j=i,#d, d[j]=1); break)); for(n=1,fromdigits(d,5), t=fromdigits(binary(n),5); if(vecmax(digits(t,3))<2, listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Feb 02 2016

Formula

a(n) >> n^k with k = log 5/log 2 = 2.321928.... - Charles R Greathouse IV, Feb 02 2016