A268343 Hermit primes: primes which are not a nearest neighbor of another prime.
23, 37, 53, 67, 89, 97, 113, 157, 173, 211, 233, 277, 293, 307, 317, 359, 389, 409, 449, 457, 467, 479, 509, 577, 607, 631, 653, 691, 719, 751, 839, 853, 863, 877, 887, 919, 929, 1039, 1069, 1087, 1201, 1223, 1237, 1283, 1297, 1307, 1327, 1381, 1423, 1439
Offset: 1
Examples
53 is in the list because the previous prime, 47, is closer to 43 than to 53, and the following prime, 59, is closer to 61 than to 53.
Links
- Karl W. Heuer, Table of n, a(n) for n = 1..30000
- Robert Israel, Table of n, a(n) for n = 1..2600035
Crossrefs
Cf. A269734 (number of hermit primes <= prime(n)).
Programs
-
Maple
N:= 1000: # to get all terms <= N pr:= select(isprime, [$2 .. nextprime(nextprime(N))]): Np:= nops(pr): ishermit:= Vector(Np,1): d:= pr[3..Np] + pr[1..Np-2] - 2*pr[2..Np-1]: for i from 1 to Np-2 do if d[i] > 0 then ishermit[i]:= 0 elif d[i] < 0 then ishermit[i+2]:= 0 else ishermit[i]:= 0; ishermit[i+2]:= 0 fi od: subs(0=NULL, zip(`*`, pr[1..Np-2],convert(ishermit,list))); # Robert Israel, Mar 09 2016
-
Mathematica
Select[Prime@ Range@ 228, Function[n, AllTrue[{Subtract @@ Take[#, 2], Subtract @@ Reverse@ Take[#, -2]} &@ Differences[NextPrime[n, #] & /@ {-2, -1, 0, 1, 2}], # < 0 &]]] (* Michael De Vlieger, Feb 02 2016, Version 10 *)
-
PARI
A268343_list(LIM=1500)={my(d=vector(4),i,o,L=List());forprime(p=1,LIM,(d[i++%4+1]=-o+o=p)
d[(i-3)%4+1]&&listput(L,p-d[i%4+1]-d[(i-1)%4+1]));Vec(L)} \\ M. F. Hasler, Mar 15 2016 -
PARI
is_A268343(n,p=precprime(n-1))={n-p>p-precprime(p-1)&&(p=nextprime(n+1))-n>nextprime(p+1)-p&&isprime(n)} \\ M. F. Hasler, Mar 15 2016
Extensions
Deleted my incorrect conjecture about asymptotic behavior. - N. J. A. Sloane, Mar 10 2016
Comments