cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268434 Triangle read by rows, Lah numbers of order 2, T(n,n) = 1, T(n,k) = 0 if k<0 or k>n, otherwise T(n,k) = T(n-1,k-1)+((n-1)^2+k^2)*T(n-1,k), for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 10, 10, 1, 0, 100, 140, 28, 1, 0, 1700, 2900, 840, 60, 1, 0, 44200, 85800, 31460, 3300, 110, 1, 0, 1635400, 3476200, 1501500, 203060, 10010, 182, 1, 0, 81770000, 185874000, 90563200, 14700400, 943800, 25480, 280, 1
Offset: 0

Views

Author

Peter Luschny, Mar 07 2016

Keywords

Comments

0

Examples

			[1]
[0,        1]
[0,        2,         1]
[0,       10,        10,        1]
[0,      100,       140,       28,        1]
[0,     1700,      2900,      840,       60,      1]
[0,    44200,     85800,    31460,     3300,    110,     1]
[0,  1635400,   3476200,  1501500,   203060,  10010,   182,   1]
		

Crossrefs

Cf. A038207 (order 0), A111596 (order 1), A269946 (order 3).

Programs

  • Maple
    T := proc(n,k) option remember;
    if n=k then return 1 fi; if k<0 or k>n then return 0 fi;
    T(n-1,k-1)+((n-1)^2+k^2)*T(n-1,k) end:
    seq(seq(T(n,k), k=0..n), n=0..8);
    # Alternatively with the P-transform (cf. A269941):
    A268434_row := n -> PTrans(n, n->`if`(n=1,1, ((n-1)^2+1)/(n*(4*n-2))),
    (n,k)->(-1)^k*(2*n)!/(2*k)!): seq(print(A268434_row(n)), n=0..8);
  • Mathematica
    T[n_, n_] = 1; T[, 0] = 0; T[n, k_] /; 0 < k < n := T[n, k] = T[n-1, k-1] + ((n-1)^2 + k^2)*T[n-1, k]; T[, ] = 0;
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2017 *)
  • Sage
    #cached_function
    def T(n, k):
        if n==k: return 1
        if k<0 or k>n: return 0
        return T(n-1, k-1)+((n-1)^2+k^2)*T(n-1, k)
    for n in range(8): print([T(n, k) for k in (0..n)])
    # Alternatively with the function PtransMatrix (cf. A269941):
    PtransMatrix(8, lambda n: 1 if n==1 else ((n-1)^2+1)/(n*(4*n-2)), lambda n, k: (-1)^k*factorial(2*n)/factorial(2*k))

Formula

T(n,k) = (-1)^k*((2*n)!/(2*k)!)*P[n,k](s(n)) where P is the P-transform and s(n) = ((n-1)^2+1)/(n*(4*n-2)). The P-transform is defined in the link. Compare also the Sage and Maple implementations below.
T(n,k) = Sum_{j=k..n} A269944(n,j)*A269945(j,k).
T(n,1) = Product_{k=1..n} (k-1)^2+1 for n>=1 (cf. A101686).
T(n,n-1) = (n-1)*n*(2*n-1)/3 for n>=1 (cf. A006331).
Row sums: A269938.