A268437 Triangle read by rows, T(n,k) = (-1)^k*(2*n)!*P[n,k](1/(n+1)) where P is the P-transform, for n>=0 and 0<=k<=n.
1, 0, 1, 0, 4, 6, 0, 30, 120, 90, 0, 336, 2800, 5040, 2520, 0, 5040, 80640, 264600, 302400, 113400, 0, 95040, 2827440, 15190560, 29937600, 24948000, 7484400, 0, 2162160, 118198080, 983782800, 2986663680, 4162158000, 2724321600, 681080400
Offset: 0
Examples
[1], [0, 1], [0, 4, 6], [0, 30, 120, 90], [0, 336, 2800, 5040, 2520], [0, 5040, 80640, 264600, 302400, 113400], [0, 95040, 2827440, 15190560, 29937600, 24948000, 7484400].
Links
- Peter Luschny, The P-transform.
- Aleks Žigon Tankosič, Recurrence Relations for Some Integer Sequences Related to Ward Numbers, arXiv:2508.04754 [math.CO], 2025. See p. 3.
Programs
-
Maple
A268437 := proc(n,k) local F,T; F := proc(n,k) option remember; `if`(n=0 and k=0, 1,`if`(n=k, (4*n-2)*F(n-1,k-1), F(n-1,k)*(n+k))) end; T := proc(n,k) option remember; `if`(k=0 and n=0, 1,`if`(k<=0 or k>n, 0, (4*n-2)*n*(k*T(n-1,k)+(n+k-1)*T(n-1,k-1)))) end; T(n,k)/F(n,k) end: for n from 0 to 6 do seq(A268437(n,k), k=0..n) od; # Alternatively, with the function PTrans defined in A269941: A268437_row := n -> PTrans(n, n->1/(n+1),(n,k)->(-1)^k*(2*n)!): seq(print(A268437_row(n)),n=0..8);
-
Mathematica
T[n_, k_] := (2n)!/FactorialPower[n+k, n] Sum[(-1)^(m+k) Binomial[n+k, n+m] StirlingS2[n+m, m], {m, 0, k}]; Table[T[n, k], {n, 0, 7}, {k, 0, n}] (* Jean-François Alcover, Jun 15 2019 *)
-
Sage
A268437 = lambda n, k: (factorial(2*n)/falling_factorial(n+k, n))*sum((-1)^(m+k)* binomial(n+k, n+m)*stirling_number2(n+m, m) for m in (0..k)) for n in (0..7): print([A268437(n, m) for m in (0..n)])
-
Sage
# uses[PtransMatrix from A269941] PtransMatrix(8, lambda n: 1/(n+1), lambda n, k: (-1)^k* factorial(2*n))
Comments