A268439 Triangle read by rows, T(n,k) = C(2*n,n+k)*Sum_{m=0..k} (-1)^(m+k)*C(n+k,n+m)* Stirling2(n+m,m), for n>=0 and 0<=k<=n.
1, 0, 1, 0, 4, 3, 0, 15, 60, 15, 0, 56, 700, 840, 105, 0, 210, 6720, 22050, 12600, 945, 0, 792, 58905, 421960, 623700, 207900, 10395, 0, 3003, 492492, 6831825, 20740720, 17342325, 3783780, 135135, 0, 11440, 4012008, 100180080, 551450900, 916515600, 491891400, 75675600, 2027025
Offset: 0
Examples
[1] [0, 1] [0, 4, 3] [0, 15, 60, 15] [0, 56, 700, 840, 105] [0, 210, 6720, 22050, 12600, 945] [0, 792, 58905, 421960, 623700, 207900, 10395] [0, 3003, 492492, 6831825, 20740720, 17342325, 3783780, 135135]
Links
- Peter Luschny, The P-transform.
- Aleks Žigon Tankosič, Recurrence Relations for Some Integer Sequences Related to Ward Numbers, arXiv:2508.04754 [math.CO], 2025. See p. 3.
Programs
-
Maple
# The function PTrans is defined in A269941. A268439_row := n -> PTrans(n, n->1/(n+1), (n,k) -> (-1)^k*(2*n)!/(k!*(n-k)!)): seq(print(A268439_row(n)), n=0..8);
-
Sage
A268439 = lambda n, k: binomial(2*n, n+k)*sum((-1)^(m+k)*binomial(n+k, n+m)* stirling_number2(n+m, m) for m in (0..k)) for n in (0..7): print([A268439(n, m) for m in (0..n)])
-
Sage
# uses[PtransMatrix from A269941] # Alternatively PtransMatrix(8, lambda n: 1/(n+1), lambda n,k: (-1)^k*factorial(2*n)/ (factorial(k)*factorial(n-k)))