cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268457 T(n,k)=Number of length-n 0..k arrays with no adjacent pair x,x+1 followed at any distance by x+1,x.

Original entry on oeis.org

2, 3, 4, 4, 9, 7, 5, 16, 25, 11, 6, 25, 61, 67, 16, 7, 36, 121, 229, 176, 22, 8, 49, 211, 581, 852, 456, 29, 9, 64, 337, 1231, 2776, 3146, 1169, 37, 10, 81, 505, 2311, 7160, 13204, 11536, 2971, 46, 11, 100, 721, 3977, 15816, 41526, 62535, 42032, 7496, 56, 12, 121
Offset: 1

Views

Author

R. H. Hardin, Feb 04 2016

Keywords

Comments

Table starts
..2.....3......4.......5........6.........7.........8..........9.........10
..4.....9.....16......25.......36........49........64.........81........100
..7....25.....61.....121......211.......337.......505........721........991
.11....67....229.....581.....1231......2311......3977.......6409.......9811
.16...176....852....2776.....7160.....15816.....31276......56912......97056
.22...456...3146...13204....41526....108032....245626.....504876.....959414
.29..1169..11536...62535...240170....736525...1926444....4474451....9476950
.37..2971..42032..294967..1385338...5012171..15089356...39616567...93543782
.46..7496.152254.1385969..7970326..34047931.118040270..350431909..922677334
.56.18796.548568.6488635.45742764.230889543.922247248.3096903363.9094484100

Examples

			Some solutions for n=6 k=4
..3....2....3....2....2....0....4....2....2....0....1....0....0....3....4....3
..0....2....1....2....4....0....1....1....2....4....4....2....3....2....3....3
..0....4....1....1....4....2....3....0....1....4....2....1....1....2....0....1
..3....0....4....2....3....2....1....0....2....4....4....4....3....1....0....0
..4....1....2....3....2....2....0....4....0....4....4....4....1....3....1....3
..0....1....3....4....3....1....4....0....2....0....1....1....1....2....4....2
		

Crossrefs

Column 1 is A000124.
Row 1 is A000027(n+1).
Row 2 is A000290(n+1).
Row 3 is A061600(n+1).

Formula

Empirical for column k:
k=1: a(n) = (1/2)*n^2 + (1/2)*n + 1
k=2: a(n) = 6*a(n-1) -13*a(n-2) +14*a(n-3) -10*a(n-4) +4*a(n-5) -a(n-6)
k=3: [order 15]
k=4: [order 28]
k=5: [order 51]
k=6: [order 89]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 2*n + 1
n=4: a(n) = n^4 + 4*n^3 + 4*n^2 + n + 1
n=5: a(n) = n^5 + 5*n^4 + 7*n^3 + n^2 + 2*n
n=6: a(n) = n^6 + 6*n^5 + 11*n^4 + 2*n^3 + 6*n - 4
n=7: a(n) = n^7 + 7*n^6 + 16*n^5 + 5*n^4 - 7*n^3 + 18*n^2 - 5*n - 5 for n>1