A268457 T(n,k)=Number of length-n 0..k arrays with no adjacent pair x,x+1 followed at any distance by x+1,x.
2, 3, 4, 4, 9, 7, 5, 16, 25, 11, 6, 25, 61, 67, 16, 7, 36, 121, 229, 176, 22, 8, 49, 211, 581, 852, 456, 29, 9, 64, 337, 1231, 2776, 3146, 1169, 37, 10, 81, 505, 2311, 7160, 13204, 11536, 2971, 46, 11, 100, 721, 3977, 15816, 41526, 62535, 42032, 7496, 56, 12, 121
Offset: 1
Examples
Some solutions for n=6 k=4 ..3....2....3....2....2....0....4....2....2....0....1....0....0....3....4....3 ..0....2....1....2....4....0....1....1....2....4....4....2....3....2....3....3 ..0....4....1....1....4....2....3....0....1....4....2....1....1....2....0....1 ..3....0....4....2....3....2....1....0....2....4....4....4....3....1....0....0 ..4....1....2....3....2....2....0....4....0....4....4....4....1....3....1....3 ..0....1....3....4....3....1....4....0....2....0....1....1....1....2....4....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..421
Formula
Empirical for column k:
k=1: a(n) = (1/2)*n^2 + (1/2)*n + 1
k=2: a(n) = 6*a(n-1) -13*a(n-2) +14*a(n-3) -10*a(n-4) +4*a(n-5) -a(n-6)
k=3: [order 15]
k=4: [order 28]
k=5: [order 51]
k=6: [order 89]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 2*n + 1
n=4: a(n) = n^4 + 4*n^3 + 4*n^2 + n + 1
n=5: a(n) = n^5 + 5*n^4 + 7*n^3 + n^2 + 2*n
n=6: a(n) = n^6 + 6*n^5 + 11*n^4 + 2*n^3 + 6*n - 4
n=7: a(n) = n^7 + 7*n^6 + 16*n^5 + 5*n^4 - 7*n^3 + 18*n^2 - 5*n - 5 for n>1
Comments