A268475 Numbers n such that n^3 +/- 2 and 3*n +/- 2 are all prime.
435, 555, 2415, 31635, 38025, 44835, 80625, 88335, 97455, 98505, 99435, 124335, 142065, 145095, 165375, 176055, 204765, 246435, 279225, 293475, 310095, 315555, 332085, 344745, 348735, 376935, 392415, 443595, 462105, 467385, 482355, 581415, 609555, 626775, 636015
Offset: 1
Keywords
Examples
435 is in the sequence because 435^3 + - 2 = 82312877, 82312873; 3*435 + - 2 = 1307, 1303 are all prime. 555 is in the sequence because 555^3 + - 2 = 170953877, 170953873; 3*555 + - 2 = 1667, 1663 are all prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[n : n in [1..1e5] | IsPrime(n^3 + 2) and IsPrime(n^3 - 2) and IsPrime(3*n + 2) and IsPrime(3*n - 2)];
-
Maple
select(n -> andmap(isprime, [n^3 + 2, n^3 - 2, 3*n + 2, 3*n - 2]), [seq(p, p=1.. 10^6)]);
-
Mathematica
Select[Range[1000000], PrimeQ[#^3 + 2] && PrimeQ[#^3 - 2] && PrimeQ[3 # + 2] && PrimeQ[3 # - 2] &]
-
PARI
for(n = 1,1e5, if( isprime(n^3 + 2) && isprime(n^3 - 2) && isprime(3*n + 2) && isprime(3*n - 2), print1(n ", ")))
Comments