cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268475 Numbers n such that n^3 +/- 2 and 3*n +/- 2 are all prime.

Original entry on oeis.org

435, 555, 2415, 31635, 38025, 44835, 80625, 88335, 97455, 98505, 99435, 124335, 142065, 145095, 165375, 176055, 204765, 246435, 279225, 293475, 310095, 315555, 332085, 344745, 348735, 376935, 392415, 443595, 462105, 467385, 482355, 581415, 609555, 626775, 636015
Offset: 1

Views

Author

K. D. Bajpai, Feb 05 2016

Keywords

Comments

All the terms in this sequence are congruent to 0 (mod 5).
Each term in this sequence yields two sets of cousin prime pairs i.e., for n = 435 -> {82312877, 82312873} and {1307, 1303}.
All terms are congruent to 15 mod 30. - Robert Israel, Feb 05 2016

Examples

			435 is in the sequence because 435^3 + - 2 =  82312877, 82312873; 3*435 + - 2 = 1307, 1303 are all prime.
555 is in the sequence because 555^3 + - 2 =  170953877, 170953873; 3*555 + - 2 = 1667, 1663 are all prime.
		

Crossrefs

Programs

  • Magma
    [n : n in [1..1e5] | IsPrime(n^3 + 2) and IsPrime(n^3 - 2) and IsPrime(3*n + 2) and IsPrime(3*n - 2)];
  • Maple
    select(n -> andmap(isprime, [n^3 + 2, n^3 - 2, 3*n + 2, 3*n - 2]), [seq(p, p=1.. 10^6)]);
  • Mathematica
    Select[Range[1000000], PrimeQ[#^3 + 2] && PrimeQ[#^3 - 2] && PrimeQ[3 # + 2] && PrimeQ[3 # - 2] &]
  • PARI
    for(n = 1,1e5, if( isprime(n^3 + 2) && isprime(n^3 - 2) && isprime(3*n + 2) && isprime(3*n - 2), print1(n ", ")))