A268486 Least k starting a chain of (2n+1) consecutive integers {h(k+i)}, i=0,1,...,2n, where h(k) is the length of the finite set {k, f(k), f(f(k)), ..., 1} in the Collatz (or 3x + 1) problem, with the property that h(k) = h(k+2n), h(k+1) = h(k+2n-1), ..., h(k+n-1) = h(k+n+1).
24, 48, 230, 229, 228, 2987, 7083, 7083, 14168, 15959, 57346, 57346, 119388, 182852, 365740, 365739, 365738, 596310, 596310, 1088124, 1088123, 2901713, 2901712, 3264428, 3264428
Offset: 1
Examples
a(3) = 230 because in the first 7-tuple {h(230), h(231), h(232), h(233), h(234), h(235), h(236)} = {34, 127, 21, 83, 21, 127, 34}, the numbers are symmetric w.r.t. its central h(233) = 83. Hence 230 belongs to the sequence. The first elements k of the other 7-tuples {h(k+i)}, i=0..6, are 362, 810, 836, 943, 1222, 1256, 1322, 1410, ...
Programs
-
Maple
nn:=10^7:T:=array(1..nn): for j from 1 to 5*10^6 do: k:=0:m:=j:it:=0: for i from 1 to nn while(m<>1) do: if irem(m,2)=0 then m:=m/2: else m:=3*m+1: fi: it:=it+1: od: k:=j:T[j]:=it: od: for n from 43 by 2 to 60 do: ii:=0: for j from 1 to nn while(ii=0)do: itr:=0:lst:={}: for jj from 1 to (n-1)/2 do: lst:=lst union {T[j+jj-1]} union {T[j+n-jj]}: if T[j+jj-1]= T[j+n-jj] then itr:=itr+1: else fi: od: if itr=(n-1)/2 then ii:=1: printf("%d %d \n",n,j): else fi: od: od:
Comments