A268511 Odd integers n such that 3^n + 5^n = x^2 + y^2 (x and y integers) is solvable.
1, 5, 13, 17, 29, 89, 109, 149, 157, 193, 373
Offset: 1
Examples
1 is a term because 3^1 + 5^1 = 8 = 2^2 + 2^2. 5 is a term because 3^5 + 5^5 = 3368 = 2^2 + 58^2. 13 is a term because 3^13 + 5^13 = 1222297448 = 4118^2 + 34718^2.
Programs
-
Mathematica
Select[Range[1, 110, 2], Resolve@ Exists[{x, y}, Reduce[3^# + 5^# == (x^2 + y^2), {x, y}, Integers]] &] (* Michael De Vlieger, Feb 07 2016 *)
-
PARI
is(n) = #bnfisintnorm(bnfinit(z^2+1), n); for(n=1, 1e3, if(n%2==1 && is(3^n + 5^n), print1(n, ", ")));
-
Python
from sympy import factorint A268511_list = [] for n in range(1,50,2): m = factorint(3**n+5**n) for d in m: if d % 4 == 3 and m[d] % 2: break else: A268511_list.append(n) # Chai Wah Wu, Dec 26 2018
Extensions
a(8)-a(9) from Giovanni Resta, Apr 10 2016
a(10)-a(11) from Chai Wah Wu, Jul 22 2020
Comments