A268549 Diagonal of (1 - 9 x y)/((1 - 3 y - 2 x + 3 y^2 + 9 x^2 y) * (1 - u - z) * (1 - v - w)).
1, 12, 648, 50400, 4630500, 468087984, 50345463168, 5655718328832, 656151696743400, 78036148295820000, 9465472643689782720, 1166663950520357802240, 145719568153188579382560, 18405635030728188793200000
Offset: 0
Keywords
Examples
1 + 12*x + 648*x^2 + 50400*x^3 + ...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..100
- A. Bostan, S. Boukraa, J.-M. Maillard, and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015, Eq. (30).
- Jacques-Arthur Weil, Supplementary Material for the Paper "Diagonals of rational functions and selected differential Galois groups"
Programs
-
Maple
A268549 := proc(n) (1-9*x*y)/(1-3*y-2*x+3*y^2+9*x^2*y)/(1-u-z)/(1-v-w) ; coeftayl(%,x=0,n) ; coeftayl(%,y=0,n) ; coeftayl(%,z=0,n) ; coeftayl(%,u=0,n) ; coeftayl(%,v=0,n) ; coeftayl(%,w=0,n) ; end proc: seq(A268549(n),n=0..40) ; # R. J. Mathar, Mar 11 2016 series(hypergeom([1/3, 1/2, 1/2], [1, 1], 144*x), x=0, 14); # Gheorghe Coserea, Aug 15 2016
-
Mathematica
FullSimplify[Table[3^(2*n)*(2*n)!^2*Gamma[n + 1/3]/(Gamma[1/3]*(n!)^5), {n, 0, 15}]] (* Vaclav Kotesovec, Jul 01 2016 *)
Formula
a(n) = [(xyzuvw)^n] (1 - 9*x*y)/((1 - 3*y - 2*x + 3*y^2 + 9*x^2*y) * (1 - u - z) * (1 - v - w)).
D-finite with recurrence: n^3*a(n) -12*(3*n-2)*(-1+2*n)^2*a(n-1)=0. - R. J. Mathar, Mar 11 2016 [follows from the hypergeometric g.f. below - Georg Fischer, Jul 30 2022]
From Vaclav Kotesovec, Jul 01 2016: (Start)
a(n) = 3^(2*n) * (2*n)!^2 * Gamma(n + 1/3) / (Gamma(1/3) * (n!)^5).
a(n) ~ 12^(2*n)/(Gamma(1/3)*Pi*n^(5/3)).
(End)
From Gheorghe Coserea, Aug 16 2016: (Start)
a(n) = [(xyzuv)^n] 1/((1 - x + 3*y - 27*x*y^3 - 27*x*y^2 - 9*x*y + 3*y^2) * (1 - u - v - u*z - v*z)).
G.f.: hypergeom([1/3, 1/2, 1/2], [1, 1], 144*x).
(End)
Comments