A268593 The largest of three distinct primes, a > b > c > 0, such that each of the following four numbers are also prime: a+b+c, a+b-c, a-b+c, a-b-c, regardless of sign.
13, 17, 19, 23, 37, 43, 47, 53, 67, 73, 83, 97, 107, 113, 127, 137, 139, 157, 167, 181, 193, 197, 199, 223, 227, 229, 233, 251, 263, 269, 277, 283, 317, 337, 347, 349, 373, 379, 383, 397, 409, 431, 433, 439, 443, 461
Offset: 1
Keywords
Examples
The first Prime Septet is based on {a,b,c} = {13,11,5}, with a+b+c =29, a+b-c=19, a-b+c=7, a-b-c =-3. The first "a" value associated with more than one septet is 47, with {a,b,c} values of {47,37,13} and {47,43,7}.
Programs
-
PARI
listp(nn) = {forprime(p=5, nn, ok = 0; forprime(q=3, p-1, forprime(r=2, q-1, if (isprime(abs(p+q+r)) && isprime(abs(p+q-r)) && isprime(abs(p-q+r)) && isprime(abs(p-q-r)), ok = 1; break);); if (ok, break);); if (ok, print1(p, ", ")););} \\ Michel Marcus, Mar 13 2016
Comments