A268631 Number of ordered pairs (a,b) of positive integers less than n with the property that n divides ab.
0, 0, 0, 1, 0, 4, 0, 5, 4, 8, 0, 17, 0, 12, 16, 17, 0, 28, 0, 33, 24, 20, 0, 53, 16, 24, 28, 49, 0, 76, 0, 49, 40, 32, 48, 97, 0, 36, 48, 101, 0, 112, 0, 81, 100, 44, 0, 145, 36, 96, 64, 97, 0, 136, 80, 149, 72, 56, 0, 241, 0, 60, 148, 129, 96, 184, 0, 129, 88, 212
Offset: 1
Keywords
Examples
For n=10 the a(10)=8 ordered pairs are (2,5), (5,2), (4,5), (5,4), (5,6), (6,5), (5,8), and (8,5).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Crossrefs
Cf. A006579.
Programs
-
Mathematica
a[n_] := Sum[Sum[1, {i, Divisors[n*k]}] - 2*Sum[1, {i, TakeWhile[Divisors[n*k], # <= k &]}], {k, 1, n - 1}]
-
PARI
a(n) = sum(k=1, n-1, sumdiv(n*k, d, (d > k) && (d < n))); \\ Michel Marcus, Feb 09 2016
-
Python
from math import prod from sympy import factorint def A268631(n): return 1 - 2*n + prod(p**(e-1)*((p-1)*e+p) for p, e in factorint(n).items()) # Chai Wah Wu, May 15 2022
Formula
a(n) = Sum_{k=1..n-1} (number of divisors of nk that are between k and n, exclusive).
a(n) = Sum_{k=1..n-1} (number of divisors of nk - 2*(number of divisors of nk that are <= k)).
a(n) = A006579(n) - (n-1). - Michel Marcus, Feb 09 2016
a(p^k) = (p(k-1)-k)*p^(k-1)+1 for prime p. - Chai Wah Wu, May 15 2022
Comments