A268633 Number of n X 2 0..2 arrays with some element plus some horizontally or vertically adjacent neighbor totalling two exactly once.
3, 24, 120, 504, 1944, 7128, 25272, 87480, 297432, 997272, 3306744, 10865016, 35429400, 114791256, 369882936, 1186176312, 3788111448, 12053081880, 38225488248, 120875192568, 381221761176, 1199453833944, 3765727153080
Offset: 1
Keywords
Examples
Some solutions for n=8: ..0..1. .1..2. .2..1. .1..2. .2..2. .0..0. .0..0. .2..2. .1..2. .1..2 ..1..0. .2..1. .1..0. .2..2. .1..2. .0..0. .0..0. .2..1. .2..1. .2..1 ..2..1. .1..0. .2..1. .2..1. .2..1. .0..1. .0..0. .2..1. .2..2. .2..1 ..2..1. .0..0. .1..0. .0..0. .2..2. .1..2. .1..0. .1..2. .1..2. .2..2 ..2..2. .0..0. .2..2. .1..0. .2..2. .0..1. .0..1. .2..2. .0..0. .1..2 ..2..1. .0..0. .2..2. .0..1. .0..1. .0..0. .1..0. .2..2. .1..0. .2..1 ..1..0. .1..2. .2..2. .0..0. .0..0. .2..1. .2..2. .2..1. .0..0. .2..2 ..0..0. .0..1. .2..2. .0..0. .0..0. .2..2. .2..2. .1..2. .0..1. .2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A268639.
Formula
Empirical: a(n) = 6*a(n-1) - 9*a(n-2) for n>3.
Conjectures from Colin Barker, Mar 21 2018: (Start)
G.f.: 3*x*(1 + x)^2 / (1 - 3*x)^2.
a(n) = 8*3^(n-2)*(2*n-1) for n>1.
(End)
Comments