A268641 Squarefree numbers k such that k^2 + 1 and k^2 - 1 are also squarefree.
2, 6, 14, 22, 30, 34, 42, 58, 66, 78, 86, 94, 102, 106, 110, 114, 130, 138, 142, 158, 166, 178, 186, 194, 202, 210, 214, 222, 230, 238, 254, 258, 266, 286, 302, 310, 322, 330, 346, 354, 358, 366, 390, 394, 398, 402, 410, 430, 434, 438, 446, 454, 462, 466, 470, 498
Offset: 1
Keywords
Examples
a(2) = 6 = 2 * 3: 6^2 + 1 = 37 = 1 * 37; 6^2 - 1 = 35 = 5 * 7; 6, 37, 35 are all squarefree.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[n : n in [1..1000] | IsSquarefree(n) and IsSquarefree(n^2+1) and IsSquarefree(n^2-1) ];
-
Maple
select(n -> andmap(issqrfree, [n, n^2+1, n^2-1]), [seq(n, n=2.. 10^3)]);
-
Mathematica
Select[Range[1000], SquareFreeQ[#] && SquareFreeQ[#^2 + 1] && SquareFreeQ[#^2 - 1] &]
-
PARI
for(n=2, 1000, issquarefree(n) & issquarefree(n^2 + 1) & issquarefree(n^2 - 1) & print1(n,", "))
Comments