A268643 Number of 1's in decimal representation of n.
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Crossrefs
Second column of A100910.
Programs
-
Maple
f:= n -> numboccur(1,convert(n,base,10)): map(f, [$0..100]);
-
Mathematica
DigitCount[Range[0,120],10,1] (* Harvey P. Dale, Apr 08 2018 *)
-
Python
def A268643(n): return str(n).count('1') # Chai Wah Wu, Dec 23 2022
Formula
a(n) = a(floor(n/10)) + 1 if n == 1 (mod 10), otherwise a(n) = a(floor(n/10)).
G.f. g(x) satisfies g(x) = x/(1-x^10) + (1-x^10)*g(x^10)/(1-x).