cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268647 G.f.: C(x,y)^2 - S(x,y)^2 = Sum_{n>=0} x^(2*n)*y/[Sum_{k=0..2*n+1} T(n,k)*y^k], where C(x,y) = Sum_{n>=0} x^(2*n) / Product_{k=1..2*n} (k + y) and S(x,y) = Sum_{n>=0} x^(2*n+1) / Product_{k=1..2*n+1} (k + y).

Original entry on oeis.org

0, 1, 2, 5, 4, 1, 48, 124, 120, 55, 12, 1, 2160, 6012, 6636, 3829, 1260, 238, 24, 1, 161280, 478656, 582080, 387260, 157080, 40593, 6720, 690, 40, 1, 18144000, 56772000, 74396520, 54801076, 25494150, 7927205, 1690920, 248523, 24750, 1595, 60, 1, 2874009600, 9397658880, 13075800192, 10415648880, 5357255904, 1893627736, 476011536, 86550035, 11423412, 1084083, 72072, 3185, 84, 1, 610248038400, 2071437822720, 3028563232128, 2569081620624, 1429040500160, 556365173000, 157528627256, 33179499353, 5260335080, 629597540, 56560504, 3753022, 178360, 5740, 112, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 01 2016

Keywords

Comments

This triangle illustrates the following identity.
Given
C(x,y) = Sum_{n>=0} x^(2*n) / Product_{k=1..2*n} (k + y)
S(x,y) = Sum_{n>=0} x^(2*n+1) / Product_{k=1..2*n+1} (k + y)
then
C(x,y)^2 - S(x,y)^2 = Sum_{n>=0} x^(2*n) * y / ((n + y) * Product_{k=1..2*n} (k + y)).

Examples

			Define C(x,y) by the series:
C(x,y) = 1 + x^2/((1+y)*(2+y)) + x^4/((1+y)*(2+y)*(3+y)*(4+y)) + x^6/((1+y)*(2+y)*(3+y)*(4+y)*(5+y)*(6+y)) + x^8/((1+y)*(2+y)*(3+y)*(4+y)*(5+y)*(6+y)*(7+y)*(8+y)) +...
and define S(x,y) by the series:
S(x,y) = x/(1+y) + x^3/((1+y)*(2+y)*(3+y)) + x^5/((1+y)*(2+y)*(3+y)*(4+y)*(5+y)) + x^7/((1+y)*(2+y)*(3+y)*(4+y)*(5+y)*(6+y)*(7+y)) + x^9/((1+y)*(2+y)*(3+y)*(4+y)*(5+y)*(6+y)*(7+y)*(8+y)*(9+y)) +...
then the g.f. of this triangle begins:
C(x,y)^2 - S(x,y)^2 = 1 + x^2*y/((1+y) * (1+y)*(2+y)) + x^4*y/((2+y) * (1+y)*(2+y)*(3+y)*(4+y)) + x^6*y/((3+y) * (1+y)*(2+y)*(3+y)*(4+y)*(5+y)*(6+y)) + x^8*y/((4+y) * (1+y)*(2+y)*(3+y)*(4+y)*(5+y)*(6+y)*(7+y)*(8+y)) +...
where the rows of this triangle are formed from the coefficients in the denominators of coefficients of x^(2*n) in C(x,y)^2 - S(x,y)^2, as more clearly seen in the expansion:
C(x,y)^2 - S(x,y)^2 = y/(0 + y) + x^2 * y/(2 + 5*y + 4*y^2 + y^3) +
x^4 * y/(48 + 124*y + 120*y^2 + 55*y^3 + 12*y^4 + y^5) +
x^6 * y/(2160 + 6012*y + 6636*y^2 + 3829*y^3 + 1260*y^4 + 238*y^5 + 24*y^6 + y^7) +
x^8 * y/(161280 + 478656*y + 582080*y^2 + 387260*y^3 + 157080*y^4 + 40593*y^5 + 6720*y^6 + 690*y^7 + 40*y^8 + y^9) +...
This triangle begins:
0, 1;
2, 5, 4, 1;
48, 124, 120, 55, 12, 1;
2160, 6012, 6636, 3829, 1260, 238, 24, 1;
161280, 478656, 582080, 387260, 157080, 40593, 6720, 690, 40, 1;
18144000, 56772000, 74396520, 54801076, 25494150, 7927205, 1690920, 248523, 24750, 1595, 60, 1;
2874009600, 9397658880, 13075800192, 10415648880, 5357255904, 1893627736, 476011536, 86550035, 11423412, 1084083, 72072, 3185, 84, 1;
610248038400, 2071437822720, 3028563232128, 2569081620624, 1429040500160, 556365173000, 157528627256, 33179499353, 5260335080, 629597540, 56560504, 3753022, 178360, 5740, 112, 1; ...
		

Crossrefs

Cf. A322627 (diagonal).

Programs

  • PARI
    /* C(x,y)^2 - S(x,y)^2 = Sum_{n>=0} x^(2*n)*y/[Sum_{k=0..2*n+1} T(n,k)*y^k] */
    {T(n,k) = my(C=1,S=x); C = sum(m=0,n+1, x^(2*m)/prod(k=1,2*m, k + y) +x*O(x^(2*n)));
    S = sum(m=1,n+1, x^(2*m-1)/prod(k=1,2*m-1, k + y) +x*O(x^(2*n)));
    polcoeff( y/polcoeff( C^2 - S^2, 2*n, x), k, y)}
    for(n=0,10, for(k=0,2*n+1, print1(T(n,k),", "));print(""))
    
  • PARI
    /* (n + y)*Product_{k=1..2*n} (k + y) = Sum_{k=0..2*n+1} T(n,k)*y^k */
    {T(n,k) = polcoeff((n + y)*prod(k=1,2*n, k + y), k, y)}
    for(n=0,10, for(k=0,2*n+1, print1(T(n,k),", "));print(""))

Formula

G.f. of row n: (n + y) * Product_{k=1..2*n} (k + y) = Sum_{k=0..2*n+1} T(n,k)*y^k, for n>=0.
Row sums equal A002674 (with offset): A002674(n+1) = (n+1)*(2*n+1)!.