cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268652 G.f. satisfies: A(x,y) = 1 + x*y*A(x,y+1)^2.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 9, 14, 5, 0, 64, 124, 74, 14, 0, 624, 1388, 1074, 352, 42, 0, 7736, 18964, 17292, 7520, 1588, 132, 0, 116416, 307088, 314356, 163728, 46561, 6946, 429, 0, 2060808, 5760704, 6434394, 3807910, 1311172, 266116, 29786, 1430, 0, 41952600, 122980872, 147159406, 95921164, 37846790, 9373620, 1438006, 126008, 4862, 0, 965497440, 2945806672, 3729264888, 2623904244, 1147995184, 327833296, 61731036, 7455440, 527900, 16796, 0
Offset: 0

Views

Author

Paul D. Hanna, Mar 16 2016

Keywords

Comments

Column 1 equals A128577.
Row sums equal A128318.
Main diagonal equals the Catalan numbers, A000108.

Examples

			This triangle of coefficients in g.f. A(x,y) begins:
1;
0, 1;
0, 2, 2;
0, 9, 14, 5;
0, 64, 124, 74, 14;
0, 624, 1388, 1074, 352, 42;
0, 7736, 18964, 17292, 7520, 1588, 132;
0, 116416, 307088, 314356, 163728, 46561, 6946, 429;
0, 2060808, 5760704, 6434394, 3807910, 1311172, 266116, 29786, 1430;
0, 41952600, 122980872, 147159406, 95921164, 37846790, 9373620, 1438006, 126008, 4862;
0, 965497440, 2945806672, 3729264888, 2623904244, 1147995184, 327833296, 61731036, 7455440, 527900, 16796;
0, 24786054816, 78270032288, 103887986400, 77816220888, 36954748286, 11761455804, 2565654006, 382043344, 37445610, 2195580, 58786; ...
where the g.f. A(x,y) = 1 + x*y*A(x,y+1)^2 begins:
A(x,y) = 1 + x*(y) + x^2*(2*y + 2*y^2) +
x^3*(9*y + 14*y^2 + 5*y^3) +
x^4*(64*y + 124*y^2 + 74*y^3 + 14*y^4) +
x^5*(624*y + 1388*y^2 + 1074*y^3 + 352*y^4 + 42*y^5) +
x^6*(7736*y + 18964*y^2 + 17292*y^3 + 7520*y^4 + 1588*y^5 + 132*y^6) +
x^7*(116416*y + 307088*y^2 + 314356*y^3 + 163728*y^4 + 46561*y^5 + 6946*y^6 + 429*y^7) +
x^8*(2060808*y + 5760704*y^2 + 6434394*y^3 + 3807910*y^4 + 1311172*y^5 + 266116*y^6 + 29786*y^7 + 1430*y^8) +...
RELATED TRIANGLES.
The triangle T1 of coefficients in A(x,y+1) begins:
1;
1, 1;
4, 6, 2;
28, 52, 29, 5;
276, 590, 430, 130, 14;
3480, 8240, 7142, 2902, 562, 42;
53232, 136352, 133820, 65892, 17440, 2380, 132;
955524, 2606056, 2811333, 1588813, 515738, 97246, 9949, 429;
19672320, 56489536, 65680352, 41222664, 15498120, 3613454, 514658, 41226, 1430;
456803328, 1369670752, 1692959656, 1154579428, 485522796, 131955696, 23376294, 2621102, 169766, 4862;
11810032896, 36744177952, 47799342376, 34885949644, 16033889224, 4899599348, 1016573628, 142394476, 12962360, 695860, 16796; ...
in which row sums form A128571:
[1, 2, 12, 114, 1440, 22368, 409248, 8585088, ...]
where
A(x,y+1) = 1 + x*(1 + y) + x^2*(4 + 6*y + 2*y^2) +
x^3*(28 + 52*y + 29*y^2 + 5*y^3) +
x^4*(276 + 590*y + 430*y^2 + 130*y^3 + 14*y^4) +
x^5*(3480 + 8240*y + 7142*y^2 + 2902*y^3 + 562*y^4 + 42*y^5) +
x^6*(53232 + 136352*y + 133820*y^2 + 65892*y^3 + 17440*y^4 + 2380*y^5 + 132*y^6) +
x^7*(955524 + 2606056*y + 2811333*y^2 + 1588813*y^3 + 515738*y^4 + 97246*y^5 + 9949*y^6 + 429*y^7) +...
The triangle T2 of coefficients in A(x,y)^2 begins:
1;
0, 2;
0, 4, 5;
0, 18, 32, 14;
0, 128, 270, 184, 42;
0, 1248, 2940, 2488, 928, 132;
0, 15472, 39513, 38364, 18266, 4372, 429;
0, 232832, 633296, 678712, 377332, 117430, 19776, 1430;
0, 4121616, 11800512, 13648092, 8478840, 3119480, 692086, 87112, 4862;
0, 83905200, 250768144, 308424612, 208690548, 86565216, 22913292, 3836896, 376736, 16796;
0, 1930994880, 5987236848, 7750642944, 5617656996, 2555316840, 767744018, 154465024, 20330760, 1607720, 58786; ...
in which row sums form A128577:
[1, 2, 9, 64, 624, 7736, 116416, 2060808, 41952600, ...]
where
A(x,y)^2 = 1 + x*(2*y) + x^2*(4*y + 5*y^2) +
x^3*(18*y + 32*y^2 + 14*y^3) +
x^4*(128*y + 270*y^2 + 184*y^3 + 42*y^4) +
x^5*(1248*y + 2940*y^2 + 2488*y^3 + 928*y^4 + 132*y^5) +
x^6*(15472*y + 39513*y^2 + 38364*y^3 + 18266*y^4 + 4372*y^5 + 429*y^6) +
x^7*(232832*y + 633296*y^2 + 678712*y^3 + 377332*y^4 + 117430*y^5 + 19776*y^6 + 1430*y^7) +...
		

Crossrefs

Cf. A128577 (column 1), A128318 (row sums), A128570, A000108 (diagonal), A128571.

Programs

  • PARI
    /* Print this triangle of coefficients in A(x,y): */
    {T(n,k) = my(A=1); for(i=1,n, A = 1 + x*y*subst(A,y,y+1)^2 +x*O(x^n)); polcoeff(polcoeff(A,n,x),k,y)}
    for(n=0,12, for(k=0,n, print1(T(n,k),", "));print(""))
    
  • PARI
    /* Print triangle of coefficients in A(x,y+1): */
    {T1(n,k) = my(A=1); for(i=1,n, A = 1 + x*y*subst(A,y,y+1)^2 +x*O(x^n)); polcoeff(polcoeff(subst(A,y,y+1),n,x),k,y)}
    for(n=0,12, for(k=0,n, print1(T1(n,k),", "));print(""))
    
  • PARI
    /* Print triangle of coefficients in A(x,y)^2: */
    {T2(n,k) = my(A=1); for(i=1,n, A = 1 + x*y*subst(A,y,y+1)^2 +x*O(x^n)); polcoeff(polcoeff(A^2,n,x),k,y)}
    for(n=0,12, for(k=0,n, print1(T2(n,k),", "));print(""))

Formula

The g.f. of the row sums, A(x,1), equals the limit of nested squares given by
A(x,1) = 1 + x*(1 + 2*x*(1 + 3*x*(1 + 4*x*(...(1 + n*x*(...)^2)^2...)^2)^2)^2)^2.