cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A274391 Table of coefficients in functions that satisfy W_n(x) = W_{n-1}(x)^W_n(x), with W_0(x) = exp(x), as read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 16, 1, 1, 1, 7, 43, 125, 1, 1, 1, 9, 82, 525, 1296, 1, 1, 1, 11, 133, 1345, 8321, 16807, 1, 1, 1, 13, 196, 2729, 28396, 162463, 262144, 1, 1, 1, 15, 271, 4821, 71721, 734149, 3774513, 4782969, 1, 1, 1, 17, 358, 7765, 151376, 2300485, 22485898, 101808185, 100000000, 1, 1, 1, 19, 457, 11705, 283321, 5787931, 87194689, 796769201, 3129525793, 2357947691, 1, 1, 1, 21, 568, 16785, 486396, 12567187, 261066156, 3815719969, 32084546824, 108063152091, 61917364224, 1, 1, 1, 23, 691, 23149, 782321, 24539593, 656778529, 13577077401, 189440927857, 1447917011461, 4143297446729, 1792160394037, 1, 1, 1, 25, 826, 30941, 1195696, 44223529, 1457297878, 39536713209, 800175234736, 10525328121221, 72411962077126, 174723134310277, 56693912375296, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 19 2016

Keywords

Comments

The e.g.f. of each row is an infinite exponential tetration of the e.g.f. of the prior row: W_{n+1}(x) = W_n(x)^W_n(x)^W_n(x)^..., starting with exp(x) as the e.g.f. of row zero. All of these row functions may be expressed in terms of the LambertW(x) function.

Examples

			This table begins:
1, 1,  1,   1,     1,       1,         1,          1,            1, ...;
1, 1,  3,  16,   125,    1296,     16807,     262144,      4782969, ...;
1, 1,  5,  43,   525,    8321,    162463,    3774513,    101808185, ...;
1, 1,  7,  82,  1345,   28396,    734149,   22485898,    796769201, ...;
1, 1,  9, 133,  2729,   71721,   2300485,   87194689,   3815719969, ...;
1, 1, 11, 196,  4821,  151376,   5787931,  261066156,  13577077401, ...;
1, 1, 13, 271,  7765,  283321,  12567187,  656778529,  39536713209, ...;
1, 1, 15, 358, 11705,  486396,  24539593, 1457297878,  99609347825, ...;
1, 1, 17, 457, 16785,  782321,  44223529, 2940281793, 224869459201, ...;
1, 1, 19, 568, 23149, 1195696,  74840815, 5506111864, 465734919289, ...;
1, 1, 21, 691, 30941, 1754001, 120403111, 9709554961, 899836571001, ...;
...
in which the e.g.f. of row n equals W_n(x) = exp( T^n(x) ), where T^n(x) is the n-th iteration of the Euler tree function T(x).
The row functions begin:
W_0(x) = 1 + x + x^2/2! + x^3/3! + x^4/4! + x^5/5! + x^6/6! +...;
W_1(x) = 1 + x + 3*x^2/2! + 16*x^3/3! + 125*x^4/4! + 1296*x^5/5! + 16807*x^6/6! + +...+ (n+1)^(n-1)*x^n/n! +...;
W_2(x) = 1 + x + 5*x^2/2! + 43*x^3/3! + 525*x^4/4! + 8321*x^5/5! + 162463*x^6/6! + +...+ A227176(n)*x^n/n! +...;
W_3(x) = 1 + x + 7*x^2/2! + 82*x^3/3! + 1345*x^4/4! + 28396*x^5/5! + 734149*x^6/6! +...+ A268653(n)*x^n/n! +...;
W_4(x) = 1 + x + 9*x^2/2! + 133*x^3/3! + 2729*x^4/4! + 71721*x^5/5! + 2300485*x^6/6! +...+ A268654(n)*x^n/n! +...;
W_5(x) = 1 + x + 11*x^2/2! + 196*x^3/3! + 4821*x^4/4! + 151376*x^5/5! + 5787931*x^6/6! +...;
W_6(x) = 1 + x + 13*x^2/2! + 271*x^3/3! + 7765*x^4/4! + 283321*x^5/5! + 12567187*x^6/6! +...;
...
and satisfy:
(0) W_0(x) = exp(x),
(1) W_1(x) = exp(x)^W_1(x) = exp(T(x)) = LambertW(-x)/(-x),
(2) W_2(x) = W_1(x)^W_2(x) = exp(T(T(x))),
(3) W_3(x) = W_2(x)^W_3(x) = exp(T(T(T(x)))),
(4) W_4(x) = W_3(x)^W_4(x) = exp(T(T(T(T(x))))),
...
Euler's tree function T(x), and its iterates begin:
T(x) = x + 2*x^2/2! + 9*x^3/3! + 64*x^4/4! + 625*x^5/5! + 7776*x^6/6! + 117649*x^7/7! + 2097152*x^8/8! +...+ n^(n-1)*x^n/n! +...
T(T(x)) = x + 4*x^2/2! + 30*x^3/3! + 332*x^4/4! + 4880*x^5/5! + 89742*x^6/6! + 1986124*x^7/7! + 51471800*x^8/8! +...+ A207833(n)*x^n/n! +...
T(T(T(x))) = x + 6*x^2/2! + 63*x^3/3! + 948*x^4/4! + 18645*x^5/5! + 454158*x^6/6! + 13221075*x^7/7! + 448434136*x^8/8! +...+ A227278(n)*x^n/n! +...
T(T(T(T(x)))) = x + 8*x^2/2! + 108*x^3/3! + 2056*x^4/4! + 50680*x^5/5! + 1537524*x^6/6! + 55494712*x^7/7! + 2325685632*x^8/8! +...
...
Note that the e.g.f. of the n-th row function, W_n(x), also equals the ratio of two iterates of the Euler tree function: W_n(x) = T^n(x) / T^(n-1)(x).
See A274390 for the table of coefficients in these iterated tree functions.
		

Crossrefs

Cf. A274741 (same table, but read differently).

Programs

  • PARI
    {ITERATE(F,n,k) = my(G=x +x*O(x^k)); for(i=1,n,G=subst(G,x,F));G}
    {T(n,k) = my(TREE = serreverse(x*exp(-x +x*O(x^k)))); k!*polcoeff(exp(ITERATE(TREE,n,k)),k)}
    /* Print this table as a square array */
    for(n=0,10,for(k=0,10,print1(T(n,k),", "));print(""))
    /* Print this table as a flattened array */
    for(n=0,12,for(k=0,n,print1(T(n-k,k),", "));)

Formula

Let W_n(x) denote the e.g.f. of the n-th row function of this table, and T^n(x) the n-th iteration of Euler's tree function T(x) (cf. A274390), then
(1) W_n(x) = exp( T^n(x) ).
(2) W_n(x) = T^n(x) / T^(n-1)(x).
(3) W_n(x) = W_{n+1}( x/exp(x) ).
(4) W_n(x) = W_n( x/exp(x) )^W_n(x).

A227278 E.g.f.: T(T(T(x))), where T(x) = -LambertW(-x) is Euler's tree function (A000169).

Original entry on oeis.org

1, 6, 63, 948, 18645, 454158, 13221075, 448434136, 17386204761, 759123121050, 36882981687519, 1974616464026484, 115536647641839333, 7336947898087080406, 502660682907018997755, 36961205206337621142192, 2903732354672613314658225, 242753209611983811853905330
Offset: 1

Views

Author

Paul D. Hanna, Jul 04 2013

Keywords

Examples

			E.g.f.: A(x) = x + 6*x^2/2! + 63*x^3/3! + 948*x^4/4! + 18645*x^5/5! +...
Euler's tree function T(x) satisfies: T(x/exp(x)) = x, and begins:
T(x) = x + 2*x^2/2! + 3^2*x^3/3! + 4^3*x^4/4! + 5^4*x^5/5! +...
where A(x) = T(T(T(x))).
Related expansions:
A(x/exp(x)) = A(x)/exp(A(x)) = x + 4*x^2/2! + 30*x^3/3! + 332*x^4/4! + 4880*x^5/5! + 89742*x^6/6! + 1986124*x^7/7! + 51471800*x^8/8! +...+ A207833(n)*x^n/n! +...
exp(A(x)) = 1 + x + 7*x^2/2! + 82*x^3/3! + 1345*x^4/4! + 28396*x^5/5! + 734149*x^6/6! + 22485898*x^7/7! + 796769201*x^8/8! +...+ A268653(n)*x^n/n! +...
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[-LambertW[LambertW[LambertW[-x]]], {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Jul 05 2013 *)
  • PARI
    /* E.g.f.: A(x) = T(T(T(x))) */
    {a(n)=local(T=sum(k=1, n, k^(k-1)*x^k/k!)+x*O(x^n)); n!*polcoeff(subst(T,x,subst(T, x, T)), n)}
    for(n=1, 20, print1(a(n), ", "))
    
  • PARI
    /* E.g.f.: A(x) = -LambertW(LambertW(LambertW(-x))) */
    {a(n)=local(LambertW=sum(k=1, n, -k^(k-1)*(-x)^k/k!)+x*O(x^n));
    n!*polcoeff(-subst(LambertW,x,subst(LambertW,x,subst(LambertW,x,-x))),n)}
    for(n=1, 20, print1(a(n), ", "))

Formula

Given e.g.f. A(x), A(x/exp(x)) = A(x)/exp(A(x)) = T(T(x)) and equals the e.g.f. of A207833.
a(n) ~ n! * exp((1+exp(-1)+exp(-1-exp(-1)))*n)/(sqrt(2*Pi*(1-exp(-1))*(1-exp(-1-exp(-1))))*n^(3/2)). - Vaclav Kotesovec, Jul 05 2013

A268654 E.g.f.: exp( T(T(T(T(x)))) ), where T(x) = -LambertW(-x) is Euler's tree function (A000169).

Original entry on oeis.org

1, 1, 9, 133, 2729, 71721, 2300485, 87194689, 3815719969, 189440927857, 10525328121221, 647265172064985, 43660242639018241, 3205987437435132793, 254635755560090281525, 21755037223870035810001, 1989746853200670755116865, 194000891136578173746676449, 20089033883934411591428091013, 2202022786357483714102765694185
Offset: 0

Views

Author

Paul D. Hanna, Feb 18 2016

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 9*x^2/2! + 133*x^3/3! + 2729*x^4/4! + 71721*x^5/5! + 2300485*x^6/6! + 87194689*x^7/7! + 3815719969*x^8/8! +...
where A(x) = A( x/exp(x) )^A(x).
RELATED SERIES.
Define W(x) = LambertW(-x)/(-x), where W(x) = exp(x*W(x)) and begins:
W(x) = 1 + x + 3*x^2/2! + 4^2*x^3/3! + 5^3*x^4/4! + 6^4*x^5/5! + 7^5*x^6/6! + 8^6*x^7/7! + 9^7*x^8/8! +...+ A000272(n+1)*x^n/n! +...
Let F(x) = A(x/exp(x)), which begins:
F(x) = 1 + x + 5*x^2/2! + 43*x^3/3! + 525*x^4/4! + 8321*x^5/5! + 162463*x^6/6! + 3774513*x^7/7! + 101808185*x^8/8! +...+ A227176(n)*x^n/n! +...
Let G(x) = F(x/exp(x)), which begins:
G(x) = 1 + x + 7*x^2/2! + 82*x^3/3! + 1345*x^4/4! + 28396*x^5/5! + 734149*x^6/6! + 22485898*x^7/7! + 796769201*x^8/8! +...+ A268653(n)*x^n/n! +...
then W(x), F(x), G(x), and A(x) are in the family of functions that begin:
(1) W(x) = exp(x)^W(x) = exp(T(x)),
(2) F(x) = W(x)^F(x) = exp(T(T(x))),
(3) G(x) = F(x)^G(x) = exp(T(T(T(x)))),
(4) A(x) = G(x)^A(x) = exp(T(T(T(T(x))))), ...
where T(x) = -LambertW(-x) is Euler's tree function:
T(x) = x + 2*x^2/2! + 3^2*x^3/3! + 4^3*x^4/4! + 5^4*x^5/5! + 6^5*x^6/! + 7^6*x^7/7! + 8^7*x^8/8! +...+ A000169(n)*x^n/n! +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[E^(-ProductLog[ProductLog[ProductLog[ProductLog[-x]]]]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Apr 01 2016 *)
  • PARI
    /* E.g.f.: A(x) = exp(T(T(T(T(x)))) ) */
    {a(n)=local(T=sum(k=1, n, k^(k-1)*x^k/k!)+x*O(x^n)); n!*polcoeff(exp(subst(T, x, subst(T, x, subst(T, x, T)))), n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* E.g.f.: A(x) = exp( -A(x)*LambertW(LambertW(LambertW(-x))) ) */
    {a(n)=local(A=1+x, LambertW=sum(k=1, n, -k^(k-1)*(-x)^k/k!)+x*O(x^n));
    for(i=1, n, A=exp(-A*subst(LambertW, x, subst(LambertW, x, subst(LambertW, x,-x))) +x*O(x^n))); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))

Formula

E.g.f. satisfies:
(1) A(x) = A(x/exp(x))^A(x).
(2) A(x) = exp( A(x)*T(T(T(x))) ).
(3) A(x/exp(x)) = exp(T(T(T(x)))) = LambertW(LambertW(LambertW(-x))) / LambertW(LambertW(-x)).
a(n) ~ exp(1 + (exp(-1) + exp(-1 - exp(-1)) + exp(-1 - exp(-1) - exp(-1 - exp(-1))))*n) * n^(n-1) / sqrt((1 - exp(-1)) * (1 + LambertW(LambertW(-exp(-1 - exp(-1) - exp(-1 - exp(-1)) - exp(-1 - exp(-1) - exp(-1 - exp(-1))))))) * (1 + LambertW(-exp(-1 - exp(-1) - exp(-1 - exp(-1)) - exp(-1 - exp(-1) - exp(-1 - exp(-1))))))). - Vaclav Kotesovec, Apr 01 2016
Showing 1-3 of 3 results.