A268700 Total number of sequences with p_j copies of j and longest increasing subsequence of length k summed over all partitions [p_1, p_2, ..., p_k] of n into distinct parts.
1, 1, 1, 3, 4, 14, 46, 111, 330, 1614, 7348, 21340, 98145, 379405, 2633085, 14871033, 57284558, 278927415, 1609313975, 8289565670, 74945364815, 522977754235, 2403799401259, 14180489136597, 83964652635668, 623008803758260, 3918144764978718, 46950727351392315
Offset: 0
Keywords
Examples
The partitions of 4 into distinct parts are [3,1], [4] giving the a(4) = 4 sequences: 1112, 1121, 1211, 1111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..90
- J. D. Horton and A. Kurn, Counting sequences with complete increasing subsequences, Congressus Numerantium, 33 (1981), 75-80. MR 681905
Programs
-
Maple
g:= proc(l) option remember; (n-> f(l[1..nops(l)-1])* binomial(n-1, l[-1]-1)+ add(f(sort(subsop(j=l[j] -1, l))), j=1..nops(l)-1))(add(i, i=l)) end: f:= l-> (n-> `if`(n<2 or l[-1]=1, 1, `if`(l[1]=0, 0, `if`( n=2, binomial(l[1]+l[2], l[1])-1, g(l)))))(nops(l)): h:= (n, i, l)-> `if`(n>i*(i+1)/2, 0, `if`(n=0, f(l), h(n, i-1, l) +`if`(i>n, 0, h(n-i, i-1, [i, l[]])))): a:= n-> h(n$2, []): seq(a(n), n=0..30);
-
Mathematica
g[l_] := g[l] = Function[n, f[Most[l]]*Binomial[n-1, l[[-1]]-1] + Sum[f[ Sort[ReplacePart[l, j -> l[[j]]-1]]], {j, 1, Length[l]-1}]][Total[l]]; f[l_] := Function[n, If[n<2 || l[[-1]]==1, 1, If[l[[1]]==0, 0, If[n==2, Binomial[l[[1]]+l[[2]], l[[1]]]-1, g[l]]]]][Length[l]]; h[n_, i_, l_] := If[n>i*(i+1)/2, 0, If[n==0, f[l], h[n, i-1, l] + If[i>n, 0, h[n-i, i-1, Join[{i}, l]]]]]; a[n_] := h[n, n, {}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 11 2017, translated from Maple *)