A268701 Total number of sequences with c_j copies of j and longest increasing subsequence of length k summed over all compositions [c_1, c_2, ..., c_k] of n into distinct parts.
1, 1, 1, 5, 7, 27, 195, 421, 1619, 8675, 105757, 274029, 1402193, 6625987, 55349787, 975068069, 3137395939, 17960895375, 101880880461, 696011551909, 7596647200175, 197122787505191, 723879298052695, 4905597865756059, 29537689035766501, 227793692735075911
Offset: 0
Keywords
Examples
The compositions of 4 into distinct parts are [3,1], [1,3], [4] giving the a(4) = 7 sequences: 1112, 1121, 1211, 1222, 2122, 2212, 1111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..90
- J. D. Horton and A. Kurn, Counting sequences with complete increasing subsequences, Congressus Numerantium, 33 (1981), 75-80. MR 681905
Programs
-
Maple
c:= l-> f(l)*nops(l)!/(v-> mul(coeff(v, x, j)!, j=0..degree(v)))(add(x^i, i=l)): g:= proc(l) option remember; (n-> f(l[1..nops(l)-1])* binomial(n-1, l[-1]-1)+ add(f(sort(subsop(j=l[j] -1, l))), j=1..nops(l)-1))(add(i, i=l)) end: f:= l-> (n-> `if`(n<2 or l[-1]=1, 1, `if`(l[1]=0, 0, `if`( n=2, binomial(l[1]+l[2], l[1])-1, g(l)))))(nops(l)): h:= (n, i, l)-> `if`(n>i*(i+1)/2, 0, `if`(n=0, c(l), h(n, i-1, l) +`if`(i>n, 0, h(n-i, i-1, [i, l[]])))): a:= n-> h(n$2, []): seq(a(n), n=0..30);
-
Mathematica
c[l_] := f[l]*Length[l]!/Function[v, Product[Coefficient[v, x, j]!,{j, 0, Exponent[v, x]}]][Sum[x^i, {i, l}]]; g[l_] := g[l] = Function[n, f[Most[l]]*Binomial[n - 1, l[[-1]] - 1] + Sum[f[Sort[ReplacePart[l, j -> l[[j]] - 1]]], {j, 1, Length[l] - 1}]][Total[l]]; f[l_] := Function[n, If[n < 2 || l[[-1]] == 1, 1, If[l[[1]] == 0, 0, If[n == 2, Binomial[l[[1]] + l[[2]], l[[1]]] - 1, g[l]]]]][Length[l]]; h[n_, i_, l_] := If[n > i (i + 1)/2, 0, If[n == 0, c[l], h[n, i - 1, l] + If[i > n, 0, h[n - i, i - 1, Join[{i}, l]]]]]; a[n_] := h[n, n, {}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 12 2021, after Alois P. Heinz *)