A268726 Index of the toggled bit between n and A268717(n+1): a(n) = A000523(A003987(n, A268717(1+n))).
0, 1, 2, 0, 3, 0, 0, 1, 4, 0, 0, 1, 0, 1, 2, 0, 5, 0, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 3, 0, 0, 1, 6, 0, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 3, 0, 0, 1, 0, 1, 2, 0, 3, 0, 0, 1, 4, 0, 0, 1, 0, 1, 2, 0, 7, 0, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 3, 0, 0, 1, 0, 1, 2, 0, 3, 0, 0, 1, 4, 0, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 3, 0, 0, 1, 4, 0, 0, 1, 0, 1, 2, 0, 5, 0, 0, 1, 0, 1, 2, 0, 0
Offset: 0
Links
- Antti Karttunen, Table of n, a(n) for n = 0..16383
- Indranil Ghosh, C program to generate the sequence
Crossrefs
Programs
-
Mathematica
A003188[n_]:=BitXor[n, Floor[n/2]]; A006068[n_]:=If[n<2, n, Block[{m=A006068[Floor[n/2]]}, 2m + Mod[Mod[n,2] + Mod[m, 2], 2]]]; A268717[n_]:=If[n<1, 0, A003188[1 + A006068[n - 1]]]; a[n_]:= Floor[Log[2, BitXor[n, A268717[n + 1]]]]; Table[a[n], {n, 0, 200}] (* Indranil Ghosh, Apr 02 2017 *)
-
PARI
A003188(n) = bitxor(n, n\2); A006068(n) = if(n<2, n, {my(m = A006068(n\2)); 2*m + (n%2 + m%2)%2}); A268717(n) = if(n<1, 0, A003188(1 + A006068(n - 1))); for(n=0, 200, print1(logint(bitxor(n, A268717(n + 1)), 2),", ")) \\ Indranil Ghosh, Apr 02 2017
-
Python
def A003188(n): return n^(n//2) def A006068(n): if n<2: return n else: m=A006068(n//2) return 2*m + (n%2 + m%2)%2 def A268717(n): return 0 if n<1 else A003188(1 + A006068(n - 1)) print([int(math.floor(math.log(n^A268717(n + 1), 2))) for n in range(201)]) # Indranil Ghosh, Apr 02 2017
-
Scheme
(define (A268726 n) (A000523 (A003987bi n (A268717 (+ 1 n))))) ;; A003987bi implements the bitwise-XOR, defined in A003987.
Comments