A268758 Number of polyominoes with width and height equal to 2n that are invariant under all symmetries of the square.
1, 3, 17, 163, 2753, 84731, 4879497, 535376723, 112921823249, 45931435159067, 36048888105745113, 54568015172025197171, 159197415409641803530753, 894444473815989281612355579, 9671160618112663336510127727593, 201110001346886305066013828873025811
Offset: 1
Keywords
Examples
For a(2) = 3: the three polyominoes of width and height 2*2 - 1 = 3 and the corresponding three polynomial of width and height 2*2 = 4 are shown below. Note that each even-dimension polyomino is produced by duplicating the center row/column of an odd-dimension polyomino. 3 X 3: 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 4 X 4: 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..20
- Craig Knecht, Connections between boundaries of the square
- Craig Knecht Retention capacity of a random surface, arXiv:1110.6166 [cond-mat.dis-nn], 2011-2012.
- Wikipedia, Water Retention on Mathematical Surfaces
Formula
a(n) = A331878(n) - 3*A331878(n-1) + 3*A331878(n-2) - A331878(n-3) for n >= 4. - Andrew Howroyd, May 03 2020
Extensions
Terms a(9) and beyond from Andrew Howroyd, May 03 2020
Comments