A268766 T(n,k)=Number of nXk binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
0, 1, 1, 2, 6, 2, 5, 15, 15, 5, 10, 44, 56, 44, 10, 20, 105, 223, 223, 105, 20, 38, 258, 762, 1148, 762, 258, 38, 71, 595, 2607, 5170, 5170, 2607, 595, 71, 130, 1368, 8500, 23156, 32056, 23156, 8500, 1368, 130, 235, 3069, 27411, 99057, 193573, 193573, 99057
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..1..0..1. .1..0..0..0. .1..0..0..1. .0..0..0..1. .0..1..1..0 ..0..1..0..0. .0..0..0..1. .0..0..0..0. .0..0..0..1. .0..0..0..0 ..0..0..0..1. .0..1..0..0. .0..0..1..0. .0..0..0..0. .0..0..0..1 ..0..1..0..0. .0..1..0..0. .0..1..0..0. .1..0..0..1. .0..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1404
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
k=2: a(n) = 2*a(n-1) +3*a(n-2) -4*a(n-3) -4*a(n-4)
k=3: a(n) = 4*a(n-1) +2*a(n-2) -16*a(n-3) -a(n-4) +12*a(n-5) -4*a(n-6)
k=4: [order 8]
k=5: [order 12]
k=6: [order 16]
k=7: [order 28]
Comments