cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268774 T(n,k)=Number of nXk 0..2 arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

0, 3, 3, 12, 12, 12, 36, 32, 32, 36, 96, 100, 112, 100, 96, 240, 248, 446, 446, 248, 240, 576, 620, 1524, 2296, 1524, 620, 576, 1344, 1456, 5214, 10340, 10340, 5214, 1456, 1344, 3072, 3380, 17000, 46312, 64112, 46312, 17000, 3380, 3072, 6912, 7656, 54822
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2016

Keywords

Comments

Table starts
....0.....3.....12.......36........96.........240..........576..........1344
....3....12.....32......100.......248.........620.........1456..........3380
...12....32....112......446......1524........5214........17000.........54822
...36...100....446.....2296.....10340.......46312.......198114........837848
...96...248...1524....10340.....64112......387146......2258084......12951796
..240...620...5214....46312....387146.....3104544.....24222418.....185142872
..576..1456..17000...198114...2258084....24222418....255353744....2624246370
.1344..3380..54822...837848..12951796...185142872...2624246370...36091542548
.3072..7656.173244..3472210..73011192..1393319226..26623649020..491176316484
.6912.17148.541910.14245712.406925194.10357051740.266457432340.6585970939900

Examples

			Some solutions for n=4 k=4
..2..1..2..2. .1..2..2..2. .0..0..0..0. .0..1..0..1. .2..2..1..2
..1..2..2..1. .2..2..2..1. .1..0..1..0. .0..0..0..1. .2..2..2..2
..2..2..2..2. .2..1..2..2. .0..0..0..0. .0..0..0..0. .1..2..2..2
..2..1..2..1. .1..2..2..2. .1..1..0..1. .0..0..0..1. .2..1..2..2
		

Crossrefs

Column 1 is A167667(n-1).

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) -4*a(n-2)
k=2: a(n) = 2*a(n-1) +3*a(n-2) -4*a(n-3) -4*a(n-4) for n>5
k=3: a(n) = 4*a(n-1) +2*a(n-2) -16*a(n-3) -a(n-4) +12*a(n-5) -4*a(n-6) for n>8
k=4: [order 8] for n>10
k=5: [order 12] for n>14
k=6: [order 16] for n>18
k=7: [order 28] for n>30