A268774 T(n,k)=Number of nXk 0..2 arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
0, 3, 3, 12, 12, 12, 36, 32, 32, 36, 96, 100, 112, 100, 96, 240, 248, 446, 446, 248, 240, 576, 620, 1524, 2296, 1524, 620, 576, 1344, 1456, 5214, 10340, 10340, 5214, 1456, 1344, 3072, 3380, 17000, 46312, 64112, 46312, 17000, 3380, 3072, 6912, 7656, 54822
Offset: 1
Examples
Some solutions for n=4 k=4 ..2..1..2..2. .1..2..2..2. .0..0..0..0. .0..1..0..1. .2..2..1..2 ..1..2..2..1. .2..2..2..1. .1..0..1..0. .0..0..0..1. .2..2..2..2 ..2..2..2..2. .2..1..2..2. .0..0..0..0. .0..0..0..0. .1..2..2..2 ..2..1..2..1. .1..2..2..2. .1..1..0..1. .0..0..0..1. .2..1..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..612
Crossrefs
Column 1 is A167667(n-1).
Formula
Empirical for column k:
k=1: a(n) = 4*a(n-1) -4*a(n-2)
k=2: a(n) = 2*a(n-1) +3*a(n-2) -4*a(n-3) -4*a(n-4) for n>5
k=3: a(n) = 4*a(n-1) +2*a(n-2) -16*a(n-3) -a(n-4) +12*a(n-5) -4*a(n-6) for n>8
k=4: [order 8] for n>10
k=5: [order 12] for n>14
k=6: [order 16] for n>18
k=7: [order 28] for n>30
Comments