cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268781 T(n,k) = Number of n X k binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two no more than once.

Original entry on oeis.org

2, 4, 4, 7, 11, 7, 13, 26, 26, 13, 23, 65, 91, 65, 23, 41, 148, 316, 316, 148, 41, 72, 343, 1031, 1462, 1031, 343, 72, 126, 766, 3354, 6383, 6383, 3354, 766, 126, 219, 1709, 10615, 27531, 38483, 27531, 10615, 1709, 219, 379, 3752, 33344, 115391, 224960
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2016

Keywords

Comments

Table starts
...2....4......7......13........23.........41...........72...........126
...4...11.....26......65.......148........343..........766..........1709
...7...26.....91.....316......1031.......3354........10615.........33344
..13...65....316....1462......6383......27531.......115391........478849
..23..148...1031....6383.....38483.....224960......1288693.......7271509
..41..343...3354...27531....224960....1755113.....13493468.....101738555
..72..766..10615..115391...1288693...13493468....140404442....1425678976
.126.1709..33344..478849...7271509..101738555...1425678976...19400886875
.219.3752.103339.1957904..40511381..758303322..14341399141..262072220011
.379.8195.317958.7940136.223527424.5590121407.142487073304.3491534799847

Examples

			Some solutions for n=4, k=4
..0..0..0..0. .1..0..0..1. .1..0..1..1. .0..1..0..1. .0..1..0..0
..1..0..1..1. .0..0..1..0. .0..0..0..0. .1..0..0..0. .0..0..1..0
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
..0..0..0..0. .0..1..0..0. .1..0..1..0. .1..0..1..0. .0..1..0..1
		

Crossrefs

Column 1 is A208354(n+1).
Diagonal is A143870.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4).
k=2: a(n) = 2*a(n-1) +3*a(n-2) -4*a(n-3) -4*a(n-4).
k=3: a(n) = 4*a(n-1) +2*a(n-2) -16*a(n-3) -a(n-4) +12*a(n-5) -4*a(n-6).
k=4: [order 8].
k=5: [order 12].
k=6: [order 16].
k=7: [order 28].