cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A143870 Number of ways of placing kings with no more than 1 mutual attack on an n X n chessboard.

Original entry on oeis.org

1, 2, 11, 91, 1462, 38483, 1755113, 140404442, 19400886875, 4764856837927, 2050537030592506, 1572046460892726633, 2133798146501117397613, 5167591018292995062973870, 22288638410038000574365307819, 171813750317653145879779979300275, 2366759768251260378737273078723819964
Offset: 0

Views

Author

R. H. Hardin, Sep 04 2008

Keywords

Examples

			Configurations of 0,1,2,3 or 4 kings on an 2 X 2 chessboard and the number of mutual attacks:
.. .. .. K. .K .. K. KK .K .K K. K. .K KK KK KK
.. K. .K .. .. KK K. .. .K K. .K KK KK .K K. KK
0  0  0  0  0  1  1  1  1  1  1  3  3  3  3  6
From 16 configurations is 11 with no more than 1 mutual attack, a(2)=11.
		

Crossrefs

Extensions

Example added by Vaclav Kotesovec, Oct 20 2014
Additional terms from R. H. Hardin, Feb 13 2016

A268775 Number of n X 2 binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two no more than once.

Original entry on oeis.org

4, 11, 26, 65, 148, 343, 766, 1709, 3752, 8195, 17746, 38233, 81916, 174767, 371366, 786437, 1660240, 3495259, 7340026, 15379121, 32156324, 67108871, 139810126, 290805085, 603979768, 1252698803, 2594876066, 5368709129, 11095332172
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2016

Keywords

Examples

			Some solutions for n=4:
..0..0. .0..0. .0..1. .0..1. .1..0. .0..0. .0..0. .1..0. .1..1. .0..0
..0..0. .1..1. .1..0. .0..0. .0..0. .1..1. .0..0. .0..0. .0..0. .0..1
..0..1. .0..0. .0..0. .1..1. .0..0. .0..0. .1..0. .0..1. .0..1. .0..0
..1..0. .1..0. .1..0. .0..0. .1..0. .0..1. .1..0. .1..0. .0..0. .1..0
		

Crossrefs

Column 2 of A268781.

Formula

Empirical: a(n) = 2*a(n-1) + 3*a(n-2) - 4*a(n-3) - 4*a(n-4).
Conjectures from Colin Barker, Jan 15 2019: (Start)
G.f.: x*(4 + 3*x - 8*x^2 - 4*x^3) / ((1 + x)^2*(1 - 2*x)^2).
a(n) = ((-1)^(1+n) + 2^(2+n) + ((-1)^n+2^(1+n))*n) / 3.
(End)

A268776 Number of n X 3 binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two no more than once.

Original entry on oeis.org

7, 26, 91, 316, 1031, 3354, 10615, 33344, 103339, 317958, 970515, 2945172, 8888719, 26705714, 79909167, 238257768, 708129267, 2098664158, 6203795403, 18296271036, 53845375703, 158159174410, 463734769895, 1357486034320, 3967761581627
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2016

Keywords

Examples

			Some solutions for n=4:
..0..1..0. .0..0..0. .0..0..0. .0..0..0. .0..0..0. .0..0..0. .0..1..0
..0..1..0. .0..1..1. .1..0..0. .0..0..0. .0..0..1. .0..1..0. .0..1..0
..0..0..0. .0..0..0. .0..0..1. .0..0..1. .1..0..0. .0..0..0. .0..0..0
..0..1..0. .0..1..0. .0..1..0. .1..0..0. .1..0..0. .0..0..1. .1..0..0
		

Crossrefs

Column 3 of A268781.

Formula

Empirical: a(n) = 4*a(n-1) + 2*a(n-2) - 16*a(n-3) - a(n-4) + 12*a(n-5) - 4*a(n-6).
Empirical g.f.: x*(7 - 2*x - 27*x^2 + 12*x^3 + 8*x^4 - 4*x^5) / (1 - 2*x - 3*x^2 + 2*x^3)^2. - Colin Barker, Jan 15 2019

A268777 Number of n X 4 binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two no more than once.

Original entry on oeis.org

13, 65, 316, 1462, 6383, 27531, 115391, 478849, 1957904, 7940136, 31916445, 127480373, 506131101, 1999695453, 7865869056, 30823236470, 120372357259, 468663337303, 1819741296607, 7048393305965, 27239539562644, 105056982554032
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2016

Keywords

Examples

			Some solutions for n=4:
..0..0..0..0. .1..0..0..0. .0..1..0..0. .1..0..1..0. .0..0..0..1
..1..0..1..0. .0..0..0..1. .1..0..0..0. .0..0..0..0. .1..0..0..0
..0..0..1..0. .1..0..0..0. .0..0..0..0. .0..0..1..0. .1..0..0..0
..1..0..0..0. .1..0..1..0. .1..0..0..0. .1..0..0..1. .0..0..0..1
		

Crossrefs

Column 4 of A268781.

Formula

Empirical: a(n) = 4*a(n-1) + 10*a(n-2) - 32*a(n-3) - 47*a(n-4) + 40*a(n-5) + 38*a(n-6) - 12*a(n-7) - 9*a(n-8).
Empirical g.f.: x*(13 + 13*x - 74*x^2 - 36*x^3 + 66*x^4 + 26*x^5 - 21*x^6 - 9*x^7) / (1 - 2*x - 7*x^2 + 2*x^3 + 3*x^4)^2. - Colin Barker, Jan 15 2019

A268778 Number of nX5 binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two no more than once.

Original entry on oeis.org

23, 148, 1031, 6383, 38483, 224960, 1288693, 7271509, 40511381, 223527424, 1223021243, 6646278717, 35903716877, 192977652868, 1032630435883, 5504232072227, 29238119105311, 154834459041646, 817685821067843
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2016

Keywords

Comments

Column 5 of A268781.

Examples

			Some solutions for n=4
..1..1..0..1..0. .1..1..0..0..0. .1..1..0..0..1. .0..1..0..0..0
..0..0..0..0..0. .0..0..0..0..1. .0..0..0..0..0. .0..0..0..1..1
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..1..0..0. .1..0..1..0..0. .0..1..0..0..0. .0..0..0..0..1
		

Crossrefs

Cf. A268781.

Formula

Empirical: a(n) = 4*a(n-1) +28*a(n-2) -62*a(n-3) -314*a(n-4) +78*a(n-5) +867*a(n-6) +6*a(n-7) -859*a(n-8) +46*a(n-9) +215*a(n-10) -8*a(n-11) -16*a(n-12)

A268779 Number of nX6 binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two no more than once.

Original entry on oeis.org

41, 343, 3354, 27531, 224960, 1755113, 13493468, 101738555, 758303322, 5590121407, 40870469356, 296640792103, 2140108184248, 15358691305417, 109723986174308, 780748875032869, 5535897115345958, 39128843941494495
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2016

Keywords

Comments

Column 6 of A268781.

Examples

			Some solutions for n=4
..0..0..0..0..0..0. .0..0..0..1..1..0. .0..0..0..0..0..0. .0..0..0..0..0..0
..0..0..1..0..0..1. .1..0..0..0..0..0. .0..1..0..1..0..1. .0..0..0..1..0..0
..1..0..0..0..0..0. .0..0..0..0..0..0. .0..0..0..0..0..0. .0..0..0..0..0..1
..0..0..1..0..1..0. .1..0..0..0..1..0. .1..0..0..0..1..0. .1..0..1..0..0..0
		

Crossrefs

Cf. A268781.

Formula

Empirical: a(n) = 6*a(n-1) +51*a(n-2) -214*a(n-3) -1074*a(n-4) +2018*a(n-5) +7713*a(n-6) -10572*a(n-7) -22926*a(n-8) +30116*a(n-9) +25283*a(n-10) -32400*a(n-11) -15148*a(n-12) +15184*a(n-13) +5660*a(n-14) -2688*a(n-15) -1024*a(n-16)

A268780 Number of n X 7 binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two no more than once.

Original entry on oeis.org

72, 766, 10615, 115391, 1288693, 13493468, 140404442, 1425678976, 14341399141, 142487073304, 1404716302427, 13742060955231, 133640514636584, 1292631496259982, 12446235637750465, 119353876258739189
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2016

Keywords

Comments

Column 7 of A268781.

Examples

			Some solutions for n=4
..0..0..0..0..1..0..0. .0..1..0..0..0..0..0. .1..0..1..0..0..1..0
..0..0..0..0..0..0..0. .0..0..0..1..0..1..0. .0..0..0..0..0..0..1
..0..0..0..0..1..0..0. .0..0..0..0..0..0..0. .1..0..0..0..0..0..0
..0..0..0..1..0..0..0. .1..0..0..0..0..0..1. .0..0..0..0..0..0..1
		

Crossrefs

Cf. A268781.

Formula

Empirical: a(n) = 12*a(n-1) +64*a(n-2) -942*a(n-3) -1476*a(n-4) +26868*a(n-5) +2249*a(n-6) -376788*a(n-7) +333472*a(n-8) +2686292*a(n-9) -4376424*a(n-10) -8985248*a(n-11) +21881197*a(n-12) +12658940*a(n-13) -55768960*a(n-14) +923990*a(n-15) +80699088*a(n-16) -25850884*a(n-17) -69171189*a(n-18) +34934900*a(n-19) +34833816*a(n-20) -22502076*a(n-21) -9502460*a(n-22) +7752808*a(n-23) +1023260*a(n-24) -1356480*a(n-25) +55136*a(n-26) +94080*a(n-27) -14400*a(n-28).
Showing 1-7 of 7 results.