A268781 T(n,k) = Number of n X k binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two no more than once.
2, 4, 4, 7, 11, 7, 13, 26, 26, 13, 23, 65, 91, 65, 23, 41, 148, 316, 316, 148, 41, 72, 343, 1031, 1462, 1031, 343, 72, 126, 766, 3354, 6383, 6383, 3354, 766, 126, 219, 1709, 10615, 27531, 38483, 27531, 10615, 1709, 219, 379, 3752, 33344, 115391, 224960
Offset: 1
Examples
Some solutions for n=4, k=4 ..0..0..0..0. .1..0..0..1. .1..0..1..1. .0..1..0..1. .0..1..0..0 ..1..0..1..1. .0..0..1..0. .0..0..0..0. .1..0..0..0. .0..0..1..0 ..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0 ..0..0..0..0. .0..1..0..0. .1..0..1..0. .1..0..1..0. .0..1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1404
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4).
k=2: a(n) = 2*a(n-1) +3*a(n-2) -4*a(n-3) -4*a(n-4).
k=3: a(n) = 4*a(n-1) +2*a(n-2) -16*a(n-3) -a(n-4) +12*a(n-5) -4*a(n-6).
k=4: [order 8].
k=5: [order 12].
k=6: [order 16].
k=7: [order 28].
Comments