cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268790 Magic sums of 3 X 3 magic squares composed of primes.

Original entry on oeis.org

177, 213, 219, 267, 309, 327, 381, 393, 411, 417, 447, 453, 471, 501, 519, 537, 573, 579, 633, 681, 717, 723, 753, 771, 789, 807, 813, 843, 849, 879, 921, 933, 1011, 1041, 1047, 1059, 1077, 1101, 1119, 1137, 1149, 1167, 1191, 1203, 1227, 1257, 1263, 1293
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 13 2016

Keywords

Comments

From Robert Israel, Feb 16 2016: (Start)
All terms are 3 times odd primes.
3*p is a term if and only if p is a prime not in A073350.
Conjecture: 3*p is a term for every prime > 859.
I verified this for all primes < 100000.
The Green-Tao theorem implies the sequence is infinite: given one magic square with entries a(i,j), there are infinitely many pairs of positive integers x,y such that b(i,j) = x + y*a(i,j) are all prime. Then b(i,j) form another magic square. (End)
Every number of the form 3*(A227284(n) + 840) is in this sequence. - Arkadiusz Wesolowski, Feb 22 2016
The terms equal three times the central elements (and equivalently, one third of the sum of all elements) of the 3 X 3 magic squares made of primes, which are listed in A320872. - M. F. Hasler, Oct 28 2018

Examples

			Examples of 3 X 3 magic squares composed of primes.
.
+---+---+---+
| 17| 89| 71|
+---+---+---+
|113| 59| 5 |
+---+---+---+
| 47| 29|101|
+---+---+---+
The magic constant is 177 = a(1).
.
+---+---+---+
| 41| 89| 83|
+---+---+---+
|113| 71| 29|
+---+---+---+
| 59| 53|101|
+---+---+---+
The magic constant is 213 = a(2).
		

Crossrefs

Programs

  • Maple
    N:= 10000: # to get all terms <= N P:= select(isprime,{seq(p,p=3..2*N/3,2)}):
    count:= 0:
    for ic from 1 while P[ic] <= N/3 do
       c:= P[ic];
       V:= map(`-`,P[ic+1..-1],c) intersect map(t -> c-t, P[1..ic-1]);
       nv:= nops(V);
       VV:= {seq(seq(V[j]-V[i],j=i+1..nv),i=1..nv-1)} intersect V;
       nvv:= nops(VV);
       found:= false;
       for ia from 1 to nvv while not found do
         a:= VV[ia];
         for ib from ia+1 to nvv while VV[ib] < c - a do
           b:= VV[ib];
           if b <> 2*a and {c-a-b,c-a+b,c-b+a,c+a+b} subset P then
              found:= true;
              count:= count+1;
              A[count]:= 3*c;
              break
           fi
         od
       od:
    od:
    seq(A[i],i=1..count); # Robert Israel, Feb 16 2016
  • PARI
    c=3;A268790_vec=3*vector(50,i,c=A320872_row(1,0,c+1)[2,2]) \\ Illustrates formula & comment. - M. F. Hasler, Oct 28 2018
    
  • PARI
    is_A268790(c)={denominator(c/=3)==1&& isprime(c)&& forstep(a=2,c\2-1,2, isprime(c-a)&& isprime(c+a)&& forstep(b=2,c-2*a-2,2, isprime(c-2*a-b)&& isprime(c-a-b)&& isprime(c-b)&& isprime(c+b)&& isprime(c+a+b)&& isprime(c+2*a+b)&& return(1)))} \\ M. F. Hasler, Oct 28 2018

Formula

If conjecture is true, a(n) = 3*prime(n+40) for n >= 110. - Robert Israel, Feb 16 2016
A268790 = 3*{column 5 of A320872} as a set, i.e., with duplicates removed. - M. F. Hasler, Oct 28 2018