A268790 Magic sums of 3 X 3 magic squares composed of primes.
177, 213, 219, 267, 309, 327, 381, 393, 411, 417, 447, 453, 471, 501, 519, 537, 573, 579, 633, 681, 717, 723, 753, 771, 789, 807, 813, 843, 849, 879, 921, 933, 1011, 1041, 1047, 1059, 1077, 1101, 1119, 1137, 1149, 1167, 1191, 1203, 1227, 1257, 1263, 1293
Offset: 1
Keywords
Examples
Examples of 3 X 3 magic squares composed of primes. . +---+---+---+ | 17| 89| 71| +---+---+---+ |113| 59| 5 | +---+---+---+ | 47| 29|101| +---+---+---+ The magic constant is 177 = a(1). . +---+---+---+ | 41| 89| 83| +---+---+---+ |113| 71| 29| +---+---+---+ | 59| 53|101| +---+---+---+ The magic constant is 213 = a(2).
Links
- Robert Israel, Table of n, a(n) for n = 1..9552
- G. L. Honaker, Jr. and Chris Caldwell, Prime Curios!: 859
- Wikipedia, Magic square
- Index entries for sequences related to magic squares
Programs
-
Maple
N:= 10000: # to get all terms <= N P:= select(isprime,{seq(p,p=3..2*N/3,2)}): count:= 0: for ic from 1 while P[ic] <= N/3 do c:= P[ic]; V:= map(`-`,P[ic+1..-1],c) intersect map(t -> c-t, P[1..ic-1]); nv:= nops(V); VV:= {seq(seq(V[j]-V[i],j=i+1..nv),i=1..nv-1)} intersect V; nvv:= nops(VV); found:= false; for ia from 1 to nvv while not found do a:= VV[ia]; for ib from ia+1 to nvv while VV[ib] < c - a do b:= VV[ib]; if b <> 2*a and {c-a-b,c-a+b,c-b+a,c+a+b} subset P then found:= true; count:= count+1; A[count]:= 3*c; break fi od od: od: seq(A[i],i=1..count); # Robert Israel, Feb 16 2016
-
PARI
c=3;A268790_vec=3*vector(50,i,c=A320872_row(1,0,c+1)[2,2]) \\ Illustrates formula & comment. - M. F. Hasler, Oct 28 2018
-
PARI
is_A268790(c)={denominator(c/=3)==1&& isprime(c)&& forstep(a=2,c\2-1,2, isprime(c-a)&& isprime(c+a)&& forstep(b=2,c-2*a-2,2, isprime(c-2*a-b)&& isprime(c-a-b)&& isprime(c-b)&& isprime(c+b)&& isprime(c+a+b)&& isprime(c+2*a+b)&& return(1)))} \\ M. F. Hasler, Oct 28 2018
Formula
If conjecture is true, a(n) = 3*prime(n+40) for n >= 110. - Robert Israel, Feb 16 2016
A268790 = 3*{column 5 of A320872} as a set, i.e., with duplicates removed. - M. F. Hasler, Oct 28 2018
Comments