A268848 Number of sequences with 5 copies each of 1,2,...,n and longest increasing subsequence of length n.
1, 1, 251, 729811, 10258694241, 449363984934526, 47342758641593552281, 10162884447920460534301136, 3969183064899133655031651559801, 2599293828638212400913690945686101111, 2683885055441747960475755652405552969614101
Offset: 0
Keywords
Links
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..100 (terms 0..50 from Alois P. Heinz)
- J. D. Horton and A. Kurn, Counting sequences with complete increasing subsequences, Congressus Numerantium, 33 (1981), 75-80. MR 681905
Crossrefs
Row n=5 of A047909.
Programs
-
Mathematica
Table[Sum[Sum[Sum[Sum[k!/(i1!*i2!*i3!*i4!*(k - i1 - i2 - i3 - i4)!)*(5*k)!/(i1 + 2*i2 + 3*i3 + 4*i4 + 5*(k - i1 - i2 - i3 - i4))!*(-1)^(i1 + 2*i2 + 3*i3 + 4*i4 + 5*(k - i1 - i2 - i3 - i4) - k)/(24^i1*6^i2*2^ i3), {i4, 0, k - i1 - i2 - i3}], {i3, 0, k - i1 - i2}], {i2, 0, k - i1}], {i1, 0, k}], {k, 0, 15}] (* Vaclav Kotesovec, Mar 02 2016, after Horton and Kurn *)
Formula
a(n) ~ sqrt(5) * (3125/24)^n * n^(4*n) / exp(4*n+4). - Vaclav Kotesovec, Feb 21 2016