cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A271927 Records in A268868.

Original entry on oeis.org

1, 2, 4, 6, 9, 23, 25, 71, 73, 263, 265, 911, 913, 5021, 5023, 23291, 23293, 41359, 152681, 152683, 285985, 857951, 857953, 1517571, 1873772, 2498606, 11032457, 11032459, 16576383, 50600183, 50600185, 58908616, 235819403, 235819405, 707458211, 707458213, 1160837269, 3482511803, 3482511805
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2016

Keywords

Crossrefs

Formula

a(n) = A268868(A271928(n)). - R. J. Mathar, May 06 2016

A271928 Positions of records in A268868.

Original entry on oeis.org

1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 29, 30, 44, 45, 50, 56, 57, 72, 73, 74, 84, 93, 95, 108, 109, 113, 116, 117, 123, 126, 127, 128, 129, 144, 145, 146, 157, 158, 159, 160, 161, 162, 165, 166, 179, 191, 215, 223, 271, 272, 275, 276, 286, 287, 289, 290, 296
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2016

Keywords

Crossrefs

A269004 a(n) is the sum of the prime factors, with repetition, of the sum of all preceding terms, with initial terms a(1)=1 and a(2)=2.

Original entry on oeis.org

1, 2, 3, 5, 11, 13, 12, 47, 49, 24, 167, 169, 503, 505, 1511, 1513, 912, 432, 5879, 5881, 600, 97, 204, 118, 512, 87, 148, 3886, 23291, 23293, 71, 896, 11812, 60, 41359, 2394, 11508, 5529, 8977, 200, 152681, 152683, 604, 16996, 635, 40, 257, 957, 79594, 517, 10155
Offset: 1

Views

Author

David James Sycamore, Feb 17 2016

Keywords

Crossrefs

Cf. A001414, A268868 (similar sequence with initial terms 1,1).

Programs

  • Mathematica
    f[x_] := Total@ Flatten[ConstantArray[#1, #2] & @@@ FactorInteger[x]]; s = 3; {1, 2}~Join~Reap[Do[s += Sow@ f[s], {n, 3, 1000}] ][[-1, 1]] (* Michael De Vlieger, Jun 24 2025 *)
  • PARI
    lista(nn) = {va = vector(nn); print1(va[1] = 1, ", "); print1(va[2] = 2, ", "); sp = vecsum(va); for (k=3, nn, f = factor(sp); va[k] = sum(j=1, #f~, f[j, 1]*f[j, 2]); print1(va[k], ", "); sp += va[k]; ); } \\ Michel Marcus, Feb 19 2016
Showing 1-3 of 3 results.