A245667 Number T(n,k) of sequences in {1,...,n}^n with longest increasing subsequence of length k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 3, 1, 0, 10, 16, 1, 0, 35, 175, 45, 1, 0, 126, 1771, 1131, 96, 1, 0, 462, 17906, 23611, 4501, 175, 1, 0, 1716, 184920, 461154, 161876, 13588, 288, 1, 0, 6435, 1958979, 8837823, 5179791, 759501, 34245, 441, 1, 0, 24310, 21253375, 169844455, 157279903, 36156355, 2785525, 75925, 640, 1
Offset: 0
Examples
T(3,1) = 10: [1,1,1], [2,1,1], [2,2,1], [2,2,2], [3,1,1], [3,2,1], [3,2,2], [3,3,1], [3,3,2], [3,3,3]. T(3,3) = 1: [1,2,3]. Triangle T(n,k) begins: 1; 0, 1; 0, 3, 1; 0, 10, 16, 1; 0, 35, 175, 45, 1; 0, 126, 1771, 1131, 96, 1; 0, 462, 17906, 23611, 4501, 175, 1; 0, 1716, 184920, 461154, 161876, 13588, 288, 1; ...
Links
- Alois P. Heinz, Rows n = 0..18, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, l) option remember; `if`(n=0, 1, add(b(n-1, [seq(min(l[j], `if`(j=1 or l[j-1] `if`(k=0, `if`(n=0, 1, 0), b(n, [n$k])): T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)): seq(seq(T(n, k), k=0..n), n=0..9);
-
Mathematica
b[n_, l_List] := b[n, l] = If[n == 0, 1, Sum[b[n-1, Table[Min[l[[j]], If[j == 1 || l[[j-1]]Jean-François Alcover, Feb 04 2015, after Alois P. Heinz *)
Comments