A268896 Start at a(0)=1. a(n) = a(n-1)+2 if n == 1,2 (mod 3) and a(n)=a(n-1)+a(n-3) if n == 0 (mod 3).
1, 3, 5, 6, 8, 10, 16, 18, 20, 36, 38, 40, 76, 78, 80, 156, 158, 160, 316, 318, 320, 636, 638, 640, 1276, 1278, 1280, 2556, 2558, 2560, 5116, 5118, 5120, 10236, 10238, 10240, 20476, 20478, 20480, 40956, 40958
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,3,0,0,-2).
Programs
-
Mathematica
Simplify[Table[1/6 (10 (2^n)^(1/3) + 4 (-3 + 5 2^(n/3)) Cos[(2 n Pi)/3] + 5 2^((4 + n)/3)Sin[(n Pi)/3] (Sqrt[3] (-1 + 2^(1/3)) Cos[(n Pi)/3] + (1 + 2^(1/3)) Sin[(n Pi)/3]) - 4 (3 + Sqrt[3] Sin[(2 n Pi)/3])), {n, 0, 20}]] (* Benedict W. J. Irwin, May 30 2016 *)
Formula
G.f.: ( 1+3*x+5*x^2+3*x^3-x^4-5*x^5 ) / ( (x-1)*(2*x^3-1)*(1+x+x^2) ). - R. J. Mathar, Apr 16 2016
Comments