A268944 T(n,k)=Number of length-n 0..k arrays with no repeated value unequal to the previous repeated value plus one mod k+1.
2, 3, 4, 4, 9, 6, 5, 16, 24, 10, 6, 25, 60, 63, 14, 7, 36, 120, 220, 159, 22, 8, 49, 210, 565, 788, 396, 30, 9, 64, 336, 1206, 2615, 2780, 969, 46, 10, 81, 504, 2275, 6834, 11950, 9684, 2349, 62, 11, 100, 720, 3928, 15239, 38322, 54045, 33404, 5640, 94, 12, 121, 990
Offset: 1
Examples
Some solutions for n=6 k=4 ..2. .4. .3. .1. .4. .4. .1. .2. .2. .0. .4. .2. .0. .3. .2. .3 ..1. .4. .3. .0. .1. .0. .2. .3. .4. .0. .0. .1. .3. .0. .2. .3 ..1. .2. .2. .1. .3. .4. .4. .0. .2. .2. .2. .2. .0. .2. .3. .1 ..2. .4. .4. .3. .4. .0. .1. .2. .4. .1. .1. .3. .1. .0. .4. .2 ..3. .0. .2. .0. .2. .1. .2. .3. .1. .0. .0. .0. .1. .3. .0. .0 ..2. .3. .0. .0. .4. .4. .0. .4. .2. .2. .1. .2. .4. .3. .2. .4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9999
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2) -2*a(n-3)
k=2: a(n) = 3*a(n-1) +a(n-2) -6*a(n-3)
k=3: a(n) = 5*a(n-1) -2*a(n-2) -12*a(n-3)
k=4: a(n) = 7*a(n-1) -7*a(n-2) -20*a(n-3)
k=5: a(n) = 9*a(n-1) -14*a(n-2) -30*a(n-3)
k=6: a(n) = 11*a(n-1) -23*a(n-2) -42*a(n-3)
k=7: a(n) = 13*a(n-1) -34*a(n-2) -56*a(n-3)
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 2*n
n=4: a(n) = n^4 + 4*n^3 + 3*n^2 + n + 1
n=5: a(n) = n^5 + 5*n^4 + 4*n^3 + 3*n^2 + 2*n - 1
n=6: a(n) = n^6 + 6*n^5 + 5*n^4 + 6*n^3 + 3*n^2 - n + 2
n=7: a(n) = n^7 + 7*n^6 + 6*n^5 + 10*n^4 + 4*n^3 + n^2 + 4*n - 3
Comments