cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A268938 Number of length-n 0..2 arrays with no repeated value unequal to the previous repeated value plus one mod 2+1.

Original entry on oeis.org

3, 9, 24, 63, 159, 396, 969, 2349, 5640, 13455, 31911, 75348, 177225, 415557, 971808, 2267631, 5281359, 12280860, 28518153, 66147165, 153274488, 354861711, 820976631, 1898144676, 4386240393, 10131006069, 23390390544, 53984735343
Offset: 1

Views

Author

R. H. Hardin, Feb 16 2016

Keywords

Comments

Column 2 of A268944.

Examples

			Some solutions for n=9:
..0. .1. .2. .2. .2. .1. .2. .2. .0. .2. .1. .0. .0. .0. .0. .1
..0. .2. .0. .1. .1. .0. .0. .0. .1. .1. .2. .2. .2. .2. .2. .0
..2. .0. .2. .2. .2. .1. .1. .1. .0. .0. .1. .1. .0. .0. .0. .0
..1. .2. .2. .0. .0. .0. .2. .1. .1. .0. .0. .2. .1. .0. .2. .2
..0. .0. .0. .2. .0. .1. .0. .2. .0. .1. .0. .1. .0. .2. .0. .1
..1. .2. .2. .2. .2. .1. .2. .1. .1. .1. .2. .0. .0. .0. .0. .1
..0. .1. .0. .0. .0. .0. .1. .0. .2. .0. .0. .1. .1. .1. .2. .2
..1. .0. .0. .2. .2. .2. .1. .2. .1. .2. .1. .2. .1. .1. .1. .2
..2. .2. .2. .1. .1. .0. .0. .2. .2. .1. .0. .1. .0. .2. .2. .1
		

Crossrefs

Cf. A268944.

Formula

Empirical: a(n) = 3*a(n-1) + a(n-2) - 6*a(n-3).
Empirical g.f.: 3*x*(1 - 2*x^2) / ((1 - 2*x)*(1 - x - 3*x^2)). - Colin Barker, Mar 21 2018

A268937 Number of length-n 0..n arrays with no repeated value unequal to the previous repeated value plus one mod n+1.

Original entry on oeis.org

2, 9, 60, 565, 6834, 101192, 1773384, 35904789, 824720230, 21189902503, 602161461276, 18752026405918, 635032992414506, 23234614293228525, 913376056016994576, 38392537083966394681, 1718296926207889973454
Offset: 1

Views

Author

R. H. Hardin, Feb 16 2016

Keywords

Comments

Diagonal of A268944.

Examples

			Some solutions for n=6
..2. .1. .6. .1. .5. .3. .2. .6. .2. .0. .6. .4. .5. .0. .5. .0
..4. .6. .1. .6. .4. .3. .2. .0. .2. .3. .1. .5. .3. .1. .0. .5
..3. .4. .2. .5. .0. .2. .0. .0. .5. .0. .5. .5. .5. .6. .2. .4
..5. .3. .0. .0. .0. .6. .1. .6. .3. .1. .5. .3. .5. .3. .4. .6
..6. .6. .4. .5. .5. .5. .3. .1. .5. .2. .3. .2. .1. .5. .6. .3
..6. .0. .6. .1. .1. .1. .3. .4. .3. .5. .6. .6. .4. .1. .5. .5
		

Crossrefs

Cf. A268944.

A268939 Number of length-n 0..3 arrays with no repeated value unequal to the previous repeated value plus one mod 3+1.

Original entry on oeis.org

4, 16, 60, 220, 788, 2780, 9684, 33404, 114292, 388444, 1312788, 4415548, 14790836, 49369628, 164279892, 545170172, 1804855540, 5962578652, 19661140116, 64722276796, 212738159924, 698312564636, 2289419181780, 7497612860540
Offset: 1

Views

Author

R. H. Hardin, Feb 16 2016

Keywords

Examples

			Some solutions for n=9:
..3. .1. .0. .0. .2. .2. .0. .1. .2. .0. .2. .0. .2. .2. .2. .1
..0. .1. .2. .2. .0. .3. .3. .3. .0. .0. .1. .1. .0. .0. .1. .3
..2. .3. .3. .3. .1. .0. .2. .0. .0. .2. .3. .1. .3. .2. .3. .0
..0. .1. .3. .2. .3. .1. .1. .3. .2. .3. .1. .0. .1. .0. .0. .2
..2. .2. .0. .1. .1. .3. .2. .0. .3. .1. .3. .1. .3. .3. .1. .1
..2. .1. .3. .1. .2. .0. .2. .3. .2. .3. .2. .0. .2. .3. .2. .3
..1. .3. .0. .0. .3. .0. .0. .0. .3. .1. .3. .2. .0. .2. .1. .1
..2. .2. .1. .2. .2. .1. .2. .1. .1. .2. .1. .2. .1. .3. .1. .2
..0. .2. .0. .0. .0. .2. .1. .1. .3. .0. .1. .0. .3. .0. .3. .1
		

Crossrefs

Column 3 of A268944.

Formula

Empirical: a(n) = 5*a(n-1) - 2*a(n-2) - 12*a(n-3).
Conjectures from Colin Barker, Jan 16 2019: (Start)
G.f.: 4*x*(1 - x - 3*x^2) / ((1 - 3*x)*(1 - 2*x - 4*x^2)).
a(n) = (-40*3^n + (25-11*sqrt(5))*(1-sqrt(5))^n + (1+sqrt(5))^n*(25+11*sqrt(5))) / 10.
(End)

A268940 Number of length-n 0..4 arrays with no repeated value unequal to the previous repeated value plus one mod 4+1.

Original entry on oeis.org

5, 25, 120, 565, 2615, 11950, 54045, 242365, 1079240, 4777225, 21038595, 92244790, 402898865, 1753806625, 7611458520, 32945585965, 142262759615, 612991045150, 2636186279445, 11317111447765, 48506655275240, 207603081203425
Offset: 1

Views

Author

R. H. Hardin, Feb 16 2016

Keywords

Examples

			Some solutions for n=7:
..2. .0. .3. .2. .2. .4. .1. .2. .3. .2. .2. .1. .1. .1. .3. .2
..3. .4. .3. .1. .3. .0. .3. .1. .3. .4. .0. .0. .2. .4. .0. .1
..1. .3. .0. .3. .2. .3. .1. .3. .2. .4. .3. .1. .4. .1. .2. .1
..3. .4. .1. .1. .0. .4. .4. .1. .1. .3. .2. .2. .1. .1. .1. .4
..4. .0. .4. .4. .0. .0. .1. .4. .4. .4. .0. .2. .2. .4. .4. .1
..0. .0. .0. .0. .1. .2. .3. .3. .1. .3. .4. .4. .4. .0. .2. .4
..1. .3. .2. .1. .4. .3. .4. .3. .4. .0. .1. .0. .0. .2. .2. .0
		

Crossrefs

Column 4 of A268944.

Formula

Empirical: a(n) = 7*a(n-1) - 7*a(n-2) - 20*a(n-3).
Empirical g.f.: 5*x*(1 - 2*x - 4*x^2) / ((1 - 4*x)*(1 - 3*x - 5*x^2)). - Colin Barker, Jan 17 2019

A268941 Number of length-n 0..5 arrays with no repeated value unequal to the previous repeated value plus one mod 5+1.

Original entry on oeis.org

6, 36, 210, 1206, 6834, 38322, 213042, 1175850, 6450402, 35200458, 191222994, 1034688474, 5579060610, 29989217034, 160755450546, 859578198138, 4585950964578, 24416800390890, 129760544069778, 688431162218202
Offset: 1

Views

Author

R. H. Hardin, Feb 16 2016

Keywords

Examples

			Some solutions for n=6:
..5. .2. .0. .3. .0. .2. .4. .4. .1. .2. .4. .2. .1. .0. .4. .5
..2. .5. .4. .4. .2. .0. .2. .1. .4. .3. .3. .5. .4. .2. .3. .3
..5. .0. .5. .3. .2. .1. .4. .2. .2. .2. .3. .3. .0. .4. .0. .4
..0. .1. .1. .3. .3. .4. .1. .4. .3. .3. .2. .2. .3. .3. .2. .5
..4. .4. .3. .1. .0. .4. .4. .3. .3. .1. .4. .5. .4. .0. .0. .0
..1. .2. .3. .4. .1. .0. .4. .5. .5. .5. .4. .1. .3. .1. .2. .3
		

Crossrefs

Column 5 of A268944.

Formula

Empirical: a(n) = 9*a(n-1) - 14*a(n-2) - 30*a(n-3).
Conjectures from Colin Barker, Jan 17 2019: (Start)
G.f.: 6*x*(1 - 3*x - 5*x^2) / ((1 - 5*x)*(1 - 4*x - 6*x^2)).
a(n) = (-12*5^(1+n) + (35-11*sqrt(10))*(2-sqrt(10))^n + (2+sqrt(10))^n*(35+11*sqrt(10))) / 10.
(End)

A268942 Number of length-n 0..6 arrays with no repeated value unequal to the previous repeated value plus one mod 6+1.

Original entry on oeis.org

7, 49, 336, 2275, 15239, 101192, 667065, 4370261, 28480312, 184750699, 1193659551, 7684815880, 49319275649, 315627565757, 2014797616440, 12831930191171, 81554529162967, 517343926505224, 3276087952780041, 20712766946115685
Offset: 1

Views

Author

R. H. Hardin, Feb 16 2016

Keywords

Examples

			Some solutions for n=6:
..5. .0. .4. .6. .1. .1. .3. .2. .5. .0. .6. .4. .6. .5. .3. .1
..4. .4. .1. .5. .5. .0. .3. .0. .1. .3. .4. .4. .1. .3. .1. .6
..3. .6. .2. .6. .0. .2. .2. .5. .5. .1. .2. .0. .3. .1. .1. .6
..6. .3. .0. .4. .4. .3. .5. .2. .5. .0. .4. .3. .1. .4. .0. .5
..0. .5. .0. .1. .5. .6. .6. .3. .1. .6. .0. .5. .2. .6. .2. .0
..1. .1. .3. .4. .4. .3. .5. .4. .4. .2. .1. .4. .6. .2. .2. .3
		

Crossrefs

Column 6 of A268944.

Formula

Empirical: a(n) = 11*a(n-1) - 23*a(n-2) - 42*a(n-3).
Empirical g.f.: 7*x*(1 - 4*x - 6*x^2) / ((1 - 6*x)*(1 - 5*x - 7*x^2)). - Colin Barker, Jan 17 2019

A268943 Number of length-n 0..7 arrays with no repeated value unequal to the previous repeated value plus one mod 7+1.

Original entry on oeis.org

8, 64, 504, 3928, 30344, 232696, 1773384, 13443064, 101433800, 762265720, 5707893576, 42605289208, 317113497800, 2354253598072, 17437541654088, 128885063291896, 950791205063624, 7001691181273720, 51477520840048968
Offset: 1

Views

Author

R. H. Hardin, Feb 16 2016

Keywords

Examples

			Some solutions for n=5:
..0. .7. .3. .6. .2. .5. .7. .0. .1. .2. .2. .0. .6. .3. .5. .7
..7. .6. .5. .7. .1. .2. .7. .5. .1. .1. .4. .5. .4. .3. .5. .5
..2. .3. .5. .6. .0. .0. .3. .5. .2. .3. .7. .2. .3. .1. .2. .6
..1. .2. .0. .5. .3. .7. .5. .1. .0. .5. .5. .4. .5. .5. .5. .1
..1. .0. .3. .3. .3. .0. .6. .5. .7. .1. .3. .4. .4. .6. .4. .6
		

Crossrefs

Column 7 of A268944.

Formula

Empirical: a(n) = 13*a(n-1) - 34*a(n-2) - 56*a(n-3).
Conjectures from Colin Barker, Jan 17 2019: (Start)
G.f.: 8*x*(1 - 5*x - 7*x^2) / ((1 - 7*x)*(1 - 6*x - 8*x^2)).
a(n) = (-272*7^n + (153-37*sqrt(17))*(3-sqrt(17))^n + (3+sqrt(17))^n*(153+37*sqrt(17))) / 34.
(End)

A268945 Number of length-4 0..n arrays with no repeated value unequal to the previous repeated value plus one mod n+1.

Original entry on oeis.org

10, 63, 220, 565, 1206, 2275, 3928, 6345, 9730, 14311, 20340, 28093, 37870, 49995, 64816, 82705, 104058, 129295, 158860, 193221, 232870, 278323, 330120, 388825, 455026, 529335, 612388, 704845, 807390, 920731, 1045600, 1182753, 1332970
Offset: 1

Views

Author

R. H. Hardin, Feb 16 2016

Keywords

Examples

			Some solutions for n=9:
..9. .3. .4. .0. .0. .7. .3. .6. .2. .7. .3. .0. .7. .6. .5. .7
..2. .7. .5. .9. .0. .5. .4. .7. .8. .8. .9. .8. .0. .3. .7. .2
..6. .2. .3. .7. .8. .9. .9. .7. .3. .6. .6. .8. .8. .8. .9. .7
..2. .5. .2. .4. .9. .7. .3. .2. .5. .0. .2. .9. .7. .1. .1. .9
		

Crossrefs

Row 4 of A268944.

Formula

Empirical: a(n) = n^4 + 4*n^3 + 3*n^2 + n + 1.
Conjectures from Colin Barker, Jan 17 2019: (Start)
G.f.: x*(10 + 13*x + 5*x^2 - 5*x^3 + x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)

A268946 Number of length-5 0..n arrays with no repeated value unequal to the previous repeated value plus one mod n+1.

Original entry on oeis.org

14, 159, 788, 2615, 6834, 15239, 30344, 55503, 95030, 154319, 239964, 359879, 523418, 741495, 1026704, 1393439, 1858014, 2438783, 3156260, 4033239, 5094914, 6368999, 7885848, 9678575, 11783174, 14238639, 17087084, 20373863, 24147690
Offset: 1

Views

Author

R. H. Hardin, Feb 16 2016

Keywords

Examples

			Some solutions for n=9:
..4. .1. .5. .8. .9. .1. .8. .3. .2. .9. .6. .3. .4. .3. .2. .7
..4. .9. .9. .2. .5. .6. .2. .9. .2. .2. .9. .8. .9. .6. .9. .2
..5. .8. .5. .9. .9. .0. .7. .1. .8. .3. .9. .5. .9. .8. .8. .6
..8. .3. .8. .5. .0. .2. .0. .7. .2. .7. .6. .0. .8. .1. .1. .1
..6. .4. .0. .8. .6. .7. .4. .0. .4. .8. .9. .6. .5. .1. .3. .0
		

Crossrefs

Row 5 of A268944.

Formula

Empirical: a(n) = n^5 + 5*n^4 + 4*n^3 + 3*n^2 + 2*n - 1.
Conjectures from Colin Barker, Jan 17 2019: (Start)
G.f.: x*(14 + 75*x + 44*x^2 - 8*x^3 - 6*x^4 + x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)

A268947 Number of length-6 0..n arrays with no repeated value unequal to the previous repeated value plus one mod n+1.

Original entry on oeis.org

22, 396, 2780, 11950, 38322, 101192, 232696, 482490, 923150, 1656292, 2819412, 4593446, 7211050, 10965600, 16220912, 23421682, 33104646, 45910460, 62596300, 84049182, 111300002, 145538296, 188127720, 240622250, 304783102, 382596372
Offset: 1

Views

Author

R. H. Hardin, Feb 16 2016

Keywords

Examples

			Some solutions for n=6:
..6. .4. .5. .3. .1. .6. .2. .2. .0. .1. .1. .4. .5. .0. .6. .1
..4. .3. .2. .3. .6. .1. .6. .2. .2. .5. .3. .6. .6. .5. .2. .4
..5. .3. .4. .5. .5. .1. .6. .3. .2. .4. .0. .2. .2. .3. .6. .6
..3. .0. .3. .0. .0. .2. .0. .2. .0. .6. .0. .6. .5. .5. .3. .0
..1. .3. .4. .4. .5. .0. .2. .6. .1. .0. .2. .5. .1. .4. .6. .4
..5. .4. .3. .3. .5. .5. .5. .0. .5. .1. .6. .2. .4. .2. .5. .1
		

Crossrefs

Row 6 of A268944.

Formula

Empirical: a(n) = n^6 + 6*n^5 + 5*n^4 + 6*n^3 + 3*n^2 - n + 2.
Conjectures from Colin Barker, Jan 17 2019: (Start)
G.f.: 2*x*(11 + 121*x + 235*x^2 + 18*x^3 - 19*x^4 - 7*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
Showing 1-10 of 11 results. Next