cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268946 Number of length-5 0..n arrays with no repeated value unequal to the previous repeated value plus one mod n+1.

Original entry on oeis.org

14, 159, 788, 2615, 6834, 15239, 30344, 55503, 95030, 154319, 239964, 359879, 523418, 741495, 1026704, 1393439, 1858014, 2438783, 3156260, 4033239, 5094914, 6368999, 7885848, 9678575, 11783174, 14238639, 17087084, 20373863, 24147690
Offset: 1

Views

Author

R. H. Hardin, Feb 16 2016

Keywords

Examples

			Some solutions for n=9:
..4. .1. .5. .8. .9. .1. .8. .3. .2. .9. .6. .3. .4. .3. .2. .7
..4. .9. .9. .2. .5. .6. .2. .9. .2. .2. .9. .8. .9. .6. .9. .2
..5. .8. .5. .9. .9. .0. .7. .1. .8. .3. .9. .5. .9. .8. .8. .6
..8. .3. .8. .5. .0. .2. .0. .7. .2. .7. .6. .0. .8. .1. .1. .1
..6. .4. .0. .8. .6. .7. .4. .0. .4. .8. .9. .6. .5. .1. .3. .0
		

Crossrefs

Row 5 of A268944.

Formula

Empirical: a(n) = n^5 + 5*n^4 + 4*n^3 + 3*n^2 + 2*n - 1.
Conjectures from Colin Barker, Jan 17 2019: (Start)
G.f.: x*(14 + 75*x + 44*x^2 - 8*x^3 - 6*x^4 + x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)