A268946 Number of length-5 0..n arrays with no repeated value unequal to the previous repeated value plus one mod n+1.
14, 159, 788, 2615, 6834, 15239, 30344, 55503, 95030, 154319, 239964, 359879, 523418, 741495, 1026704, 1393439, 1858014, 2438783, 3156260, 4033239, 5094914, 6368999, 7885848, 9678575, 11783174, 14238639, 17087084, 20373863, 24147690
Offset: 1
Keywords
Examples
Some solutions for n=9: ..4. .1. .5. .8. .9. .1. .8. .3. .2. .9. .6. .3. .4. .3. .2. .7 ..4. .9. .9. .2. .5. .6. .2. .9. .2. .2. .9. .8. .9. .6. .9. .2 ..5. .8. .5. .9. .9. .0. .7. .1. .8. .3. .9. .5. .9. .8. .8. .6 ..8. .3. .8. .5. .0. .2. .0. .7. .2. .7. .6. .0. .8. .1. .1. .1 ..6. .4. .0. .8. .6. .7. .4. .0. .4. .8. .9. .6. .5. .1. .3. .0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 5 of A268944.
Formula
Empirical: a(n) = n^5 + 5*n^4 + 4*n^3 + 3*n^2 + 2*n - 1.
Conjectures from Colin Barker, Jan 17 2019: (Start)
G.f.: x*(14 + 75*x + 44*x^2 - 8*x^3 - 6*x^4 + x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)