A268971 T(n,k)=Number of nXk 0..2 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two not more than once.
3, 9, 9, 24, 60, 27, 60, 240, 336, 81, 144, 912, 2016, 1728, 243, 336, 3312, 11664, 15552, 8448, 729, 768, 11664, 63792, 136080, 114048, 39936, 2187, 1728, 40176, 339480, 1125360, 1504656, 808704, 184320, 6561, 3840, 136080, 1770048, 9093528, 18852912
Offset: 1
Examples
Some solutions for n=4 k=4 ..1..0..0..1. .2..1..0..1. .2..1..2..1. .2..1..2..1. .1..2..1..2 ..1..2..2..2. .0..0..2..2. .0..1..2..1. .1..2..2..1. .1..0..0..0 ..2..2..2..2. .1..2..2..2. .2..1..0..0. .2..2..2..2. .1..0..1..2 ..2..2..1..2. .2..1..2..2. .1..0..0..1. .2..2..1..0. .1..2..2..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..287
Formula
Empirical for column k:
k=1: a(n) = 3*a(n-1)
k=2: a(n) = 8*a(n-1) -16*a(n-2)
k=3: a(n) = 12*a(n-1) -36*a(n-2)
k=4: a(n) = 18*a(n-1) -81*a(n-2) for n>3
k=5: a(n) = 30*a(n-1) -261*a(n-2) +540*a(n-3) -324*a(n-4)
k=6: a(n) = 50*a(n-1) -805*a(n-2) +4662*a(n-3) -12150*a(n-4) +14580*a(n-5) -6561*a(n-6)
k=7: [order 8]
Empirical for row n:
n=1: a(n) = 4*a(n-1) -4*a(n-2)
n=2: a(n) = 6*a(n-1) -9*a(n-2) for n>4
n=3: a(n) = 10*a(n-1) -29*a(n-2) +20*a(n-3) -4*a(n-4) for n>6
n=4: [order 6] for n>12
n=5: [order 14] for n>18
n=6: [order 18] for n>26
n=7: [order 54] for n>60
Comments