cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268971 T(n,k)=Number of nXk 0..2 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two not more than once.

Original entry on oeis.org

3, 9, 9, 24, 60, 27, 60, 240, 336, 81, 144, 912, 2016, 1728, 243, 336, 3312, 11664, 15552, 8448, 729, 768, 11664, 63792, 136080, 114048, 39936, 2187, 1728, 40176, 339480, 1125360, 1504656, 808704, 184320, 6561, 3840, 136080, 1770048, 9093528, 18852912
Offset: 1

Views

Author

R. H. Hardin, Feb 16 2016

Keywords

Comments

Table starts
.....3........9.........24...........60............144..............336
.....9.......60........240..........912...........3312............11664
....27......336.......2016........11664..........63792...........339480
....81.....1728......15552.......136080........1125360..........9093528
...243.....8448.....114048......1504656.......18852912........231730344
...729....39936.....808704.....16061328......305242992.......5712070032
..2187...184320....5598720....167226768.....4823705520.....137497776840
..6561...835584...38071296...1709114256....74858700528....3251386055664
.19683..3735552..255301632..17218688400..1145496747312...75828095546544
.59049.16515072.1693052928.171498136464.17332683832944.1748970953035272

Examples

			Some solutions for n=4 k=4
..1..0..0..1. .2..1..0..1. .2..1..2..1. .2..1..2..1. .1..2..1..2
..1..2..2..2. .0..0..2..2. .0..1..2..1. .1..2..2..1. .1..0..0..0
..2..2..2..2. .1..2..2..2. .2..1..0..0. .2..2..2..2. .1..0..1..2
..2..2..1..2. .2..1..2..2. .1..0..0..1. .2..2..1..0. .1..2..2..1
		

Crossrefs

Column 1 is A000244.
Row 1 is A084858.

Formula

Empirical for column k:
k=1: a(n) = 3*a(n-1)
k=2: a(n) = 8*a(n-1) -16*a(n-2)
k=3: a(n) = 12*a(n-1) -36*a(n-2)
k=4: a(n) = 18*a(n-1) -81*a(n-2) for n>3
k=5: a(n) = 30*a(n-1) -261*a(n-2) +540*a(n-3) -324*a(n-4)
k=6: a(n) = 50*a(n-1) -805*a(n-2) +4662*a(n-3) -12150*a(n-4) +14580*a(n-5) -6561*a(n-6)
k=7: [order 8]
Empirical for row n:
n=1: a(n) = 4*a(n-1) -4*a(n-2)
n=2: a(n) = 6*a(n-1) -9*a(n-2) for n>4
n=3: a(n) = 10*a(n-1) -29*a(n-2) +20*a(n-3) -4*a(n-4) for n>6
n=4: [order 6] for n>12
n=5: [order 14] for n>18
n=6: [order 18] for n>26
n=7: [order 54] for n>60