A269057 Number of 6Xn 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.
729, 8586, 90450, 1350672, 17696520, 242861616, 3193266318, 42102137568, 545920367142, 7046149966992, 90162767011920, 1148006491599288, 14536545425942976, 183300000374262900, 2302096893418466826
Offset: 1
Keywords
Examples
Some solutions for n=3 ..1..1..2. .1..0..1. .0..0..0. .0..0..2. .1..2..1. .2..0..0. .0..0..1 ..2..2..2. .0..0..1. .1..0..0. .0..1..0. .1..2..1. .0..1..0. .1..0..0 ..1..2..1. .1..0..0. .1..0..0. .0..0..0. .1..2..2. .0..1..0. .1..0..1 ..2..2..2. .0..0..1. .1..2..1. .1..0..0. .1..0..1. .2..1..2. .1..0..1 ..1..2..1. .0..1..0. .1..2..1. .1..0..1. .0..0..0. .2..2..2. .1..0..1 ..2..2..2. .0..0..0. .2..2..1. .1..2..1. .0..1..0. .2..2..2. .1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A269052.
Formula
Empirical: a(n) = 12*a(n-1) +182*a(n-2) -1820*a(n-3) -15113*a(n-4) +101664*a(n-5) +646022*a(n-6) -3003324*a(n-7) -15725808*a(n-8) +55305760*a(n-9) +234926070*a(n-10) -698528578*a(n-11) -2270736611*a(n-12) +6320752450*a(n-13) +14600825558*a(n-14) -41434331996*a(n-15) -62768577651*a(n-16) +196263429930*a(n-17) +176943063476*a(n-18) -669462409316*a(n-19) -305019512324*a(n-20) +1647405492614*a(n-21) +230358934675*a(n-22) -2942270801898*a(n-23) +243588718325*a(n-24) +3841770422896*a(n-25) -923967990222*a(n-26) -3689384232910*a(n-27) +1300617284437*a(n-28) +2614259101122*a(n-29) -1127033659748*a(n-30) -1366254718948*a(n-31) +660843537364*a(n-32) +524090586634*a(n-33) -269727615782*a(n-34) -146010681184*a(n-35) +76928224259*a(n-36) +28983533038*a(n-37) -15160113967*a(n-38) -3964319226*a(n-39) +2009807783*a(n-40) +352152984*a(n-41) -170267256*a(n-42) -18138336*a(n-43) +8296524*a(n-44) +408240*a(n-45) -176400*a(n-46) for n>48
Comments