cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A269129 Number A(n,k) of sequences with k copies each of 1,2,...,n avoiding the pattern 12...n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 5, 1, 0, 0, 1, 43, 23, 1, 0, 0, 1, 374, 1879, 119, 1, 0, 0, 1, 3199, 173891, 102011, 719, 1, 0, 0, 1, 26945, 16140983, 117392909, 7235651, 5039, 1, 0, 0, 1, 224296, 1474050783, 142951955371, 117108036719, 674641325, 40319, 1
Offset: 0

Views

Author

Alois P. Heinz, Feb 19 2016

Keywords

Examples

			Square array A(n,k) begins:
  0,   0,      0,         0,            0,               0, ...
  1,   0,      0,         0,            0,               0, ...
  1,   1,      1,         1,            1,               1, ...
  1,   5,     43,       374,         3199,           26945, ...
  1,  23,   1879,    173891,     16140983,      1474050783, ...
  1, 119, 102011, 117392909, 142951955371, 173996758190594, ...
		

Crossrefs

Programs

  • Maple
    g:= proc(l) option remember; (n-> f(l[1..nops(l)-1])*
          binomial(n-1, l[-1]-1)+add(f(sort(subsop(j=l[j]
          -1, l))), j=1..nops(l)-1))(add(i, i=l))
        end:
    f:= l->(n->`if`(n=0, 1, `if`(l[1]=0, 0, `if`(n=1 or l[-1]=1, 1,
        `if`(n=2, binomial(l[1]+l[2], l[1])-1, g(l))))))(nops(l)):
    A:= (n, k)-> (k*n)!/k!^n - f([k$n]):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
    # second Maple program:
    b:= proc(k, p, j, l, t) option remember;
          `if`(k=0, (-1)^t/l!, `if`(p<0, 0, add(b(k-i, p-1,
           j+1, l+i*j, irem(t+i*j, 2))/(i!*p!^i), i=0..k)))
        end:
    A:= (n, k)-> (n*k)!*(1/k!^n-b(n, k-1, 1, 0, irem(n, 2))*n!):
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Mar 03 2016
  • Mathematica
    b[k_, p_, j_, l_, t_] := b[k, p, j, l, t] = If[k == 0, (-1)^t/l!, If[p < 0, 0, Sum[b[k-i, p-1, j+1, l + i j, Mod[t + i j, 2]]/(i! p!^i), {i, 0, k}]] ];
    A[n_, k_] := (n k)! (1/k!^n - b[n, k-1, 1, 0, Mod[n, 2]] n!); Table[ Table[ A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Apr 07 2016, after Alois P. Heinz *)

Formula

A(n,k) = A089759(k,n) - A047909(k,n) = A187783(n,k) - A047909(k,n).
Showing 1-1 of 1 results.