A269133 Number of ways to place m nonattacking queens on an m X n board, 1 <= m <= n (triangular array).
1, 2, 0, 3, 2, 0, 4, 6, 4, 2, 5, 12, 14, 12, 10, 6, 20, 36, 46, 40, 4, 7, 30, 76, 140, 164, 94, 40, 8, 42, 140, 344, 568, 550, 312, 92, 9, 56, 234, 732, 1614, 2292, 2038, 1066, 352, 10, 72, 364, 1400, 3916, 7552, 9632, 7828, 4040, 724, 11, 90, 536, 2468, 8492, 21362, 37248, 44148, 34774, 15116, 2680, 12, 110, 756, 4080, 16852, 52856, 120104, 195270, 222720, 160964, 68264, 14200
Offset: 1
Examples
The triangular array begins: n\m 1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 2 0 3 3 2 0 4 4 6 4 2 5 5 12 14 12 10 6 6 20 36 46 40 4 7 7 30 76 140 164 94 40 8 8 42 140 344 568 550 312 92 9 9 56 234 732 1614 2292 2038 1066 352 10 10 72 364 1400 3916 7552 9632 7828 4040 724 11 11 90 536 2468 8492 21362 37248 44148 34774 15116 2680 12 12 110 756 4080 16852 52856 120104 195270 222720 160964 68264 14200 ...
Links
- Math StackExchange, State space for eight queen problem
- Marko Riedel, Perl program to compute triangular array of nonattacking queens configurations
Crossrefs
Programs
-
PARI
{A269133(m, n, B=[], t=if(#B, setminus(n, Set(concat(B+t=[-#B..-1], B-t))), n=[1..n]))= if(#B < m-1, vecsum([A269133(m, setminus(n, [t]), concat(B,t)) | t<-t]), #t)} \\ M. F. Hasler, Jan 11 2022