cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A269168 Rule 30 binary tree permutation: a(1) = 1, a(2n) = A269160(a(n)), a(2n+1) = A269164(1+a(n)).

Original entry on oeis.org

1, 7, 2, 25, 9, 14, 3, 111, 33, 63, 11, 50, 18, 13, 4, 401, 143, 231, 41, 193, 79, 53, 15, 222, 66, 126, 22, 51, 17, 28, 5, 1783, 529, 945, 175, 825, 295, 223, 55, 839, 257, 497, 95, 203, 69, 49, 19, 802, 286, 462, 82, 386, 158, 106, 30, 221, 67, 119, 21, 100, 36, 27, 6, 6409, 2295, 3703, 657, 3159, 1201, 849, 233
Offset: 1

Views

Author

Antti Karttunen, Feb 21 2016

Keywords

Comments

This sequence can be represented as a binary tree. Each left hand child is produced as A269160(n), and each right hand child as A269164(1+n), when the parent node contains n:
|
...................1...................
7 2
25......../ \........9 14......../ \........3
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
111 33 63 11 50 18 13 4
401 143 231 41 193 79 53 15 222 66 126 22 51 17 28 5
etc.
Each maximal leftward branch (e.g. 1, 7, 25, ... (= A110240) or 9, 63, 193, ... or 2, 14, 50, ...) gives a trajectory of Rule 30 cellular automaton starting from a particular "seed configuration" which are given in A269164.

Crossrefs

Inverse: A269167.
Cf. A110240 (the left edge).

Programs

  • Mathematica
    nmax = (* sequence length *) 100; terms (* from A269164 *) = 2000; Clear[a, f]; A269160[n_] := BitXor[n, BitOr[2 n, 4 n]]; f[max_] := f[max] = (s = Sort[Table[A269160[n], {n, 0, max}]]; Complement[Range[Last[s]], s][[1 ;; terms]]); f[terms]; f[max = 2 terms]; While[f[max] != f[max/2], max = 2 max]; A269164[n_Integer] := If[n > Length[f[max]], 0, f[max][[n]]]; a[1] = 1; a[n_] := a[n] = If[EvenQ[n], A269160[a[n/2]], A269164[1 + a[(n - 1)/2]]]; A269168 = Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Feb 23 2016 *)

Formula

a(1) = 1, after which, a(2n) = A269160(a(n)), a(2n+1) = A269164(1+a(n)).

A269169 The least monotonic left inverse for A269164.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 11, 11, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 21, 21, 21, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 41, 41, 41, 41, 41, 41, 42, 42, 43, 44, 45, 46, 47, 48, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66
Offset: 1

Views

Author

Antti Karttunen, Feb 21 2016

Keywords

Comments

a(n) = number of terms of A269164 <= n.

Crossrefs

Programs

  • Mathematica
    terms = 100; Clear[f]; f[max_] := f[max] = (s = Sort[Table[BitXor[n, BitOr[ 2 n, 4 n]], {n, 0, max}]]; Complement[Range[Last[s]], s][[1 ;; terms]]); f[terms]; f[max = 2 terms]; While[Print[max]; f[max] != f[max/2], max = 2 max]; A269164 = f[max]; a[n_] := Count[A269164, k_ /; k <= n]; Table[ a[n], {n, 1, Length[A269164]}] (* Jean-François Alcover, Feb 23 2016 *)

Formula

Other identities. For all n >= 1:
a(A269164(n)) = n.
Showing 1-2 of 2 results.