A269168 Rule 30 binary tree permutation: a(1) = 1, a(2n) = A269160(a(n)), a(2n+1) = A269164(1+a(n)).
1, 7, 2, 25, 9, 14, 3, 111, 33, 63, 11, 50, 18, 13, 4, 401, 143, 231, 41, 193, 79, 53, 15, 222, 66, 126, 22, 51, 17, 28, 5, 1783, 529, 945, 175, 825, 295, 223, 55, 839, 257, 497, 95, 203, 69, 49, 19, 802, 286, 462, 82, 386, 158, 106, 30, 221, 67, 119, 21, 100, 36, 27, 6, 6409, 2295, 3703, 657, 3159, 1201, 849, 233
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..1023
- Antti Karttunen, Entanglement Permutations, 2016-2017
- Index entries for sequences that are permutations of the natural numbers
Programs
-
Mathematica
nmax = (* sequence length *) 100; terms (* from A269164 *) = 2000; Clear[a, f]; A269160[n_] := BitXor[n, BitOr[2 n, 4 n]]; f[max_] := f[max] = (s = Sort[Table[A269160[n], {n, 0, max}]]; Complement[Range[Last[s]], s][[1 ;; terms]]); f[terms]; f[max = 2 terms]; While[f[max] != f[max/2], max = 2 max]; A269164[n_Integer] := If[n > Length[f[max]], 0, f[max][[n]]]; a[1] = 1; a[n_] := a[n] = If[EvenQ[n], A269160[a[n/2]], A269164[1 + a[(n - 1)/2]]]; A269168 = Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Feb 23 2016 *)
Comments