cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A269174 Formula for Wolfram's Rule 124 cellular automaton: a(n) = (n OR 2n) AND ((n XOR 2n) OR (n XOR 4n)).

Original entry on oeis.org

0, 3, 6, 7, 12, 15, 14, 11, 24, 27, 30, 31, 28, 31, 22, 19, 48, 51, 54, 55, 60, 63, 62, 59, 56, 59, 62, 63, 44, 47, 38, 35, 96, 99, 102, 103, 108, 111, 110, 107, 120, 123, 126, 127, 124, 127, 118, 115, 112, 115, 118, 119, 124, 127, 126, 123, 88, 91, 94, 95, 76, 79, 70, 67, 192, 195, 198, 199, 204, 207, 206, 203, 216
Offset: 0

Views

Author

Antti Karttunen, Feb 22 2016

Keywords

Crossrefs

Cf. A269175.
Cf. A269176 (numbers not present in this sequence).
Cf. A269177 (same sequence sorted into ascending order, duplicates removed).
Cf. A269178 (numbers that occur only once).
Cf. A267357 (iterates from 1 onward).

Programs

Formula

a(n) = A163617(n) AND A269173(n).
a(n) = A163617(n) AND (A048724(n) OR A048725(n)).
a(n) = (n OR 2n) AND ((n XOR 2n) OR (n XOR 4n)).
Other identities. For all n >= 0:
a(2*n) = 2*a(n).
a(n) = A057889(A161903(A057889(n))). [Rule 124 is the mirror image of rule 110.]
G.f.: (-3*x^3 - 2*x^2 - 3*x)/(x^4 - 1) + Sum_{k>=1}((2^(k + 1)*x^(2^k) - 2^(k + 1)*x^(14*2^(k - 2)))/((x^(2^(k + 2)) - 1)*(x - 1))). - Miles Wilson, Jan 25 2025

A269175 a(n) = number of distinct k for which A269174(k) = n; number of finite predecessors for pattern encoded in the binary expansion of n in Wolfram's Rule 124 cellular automaton.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 2, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 2, 1, 0, 2, 2, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 2, 0, 0, 2, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Feb 22 2016

Keywords

Comments

At positions A000225 seems to occur the record values of this sequence: 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, ... which seem to match with A000931 (Padovan sequence), or more exactly, with A182097 (Number of compositions (ordered partitions) into parts 2 and 3). Note that these values give also the number of predecessors for each "repunit-pattern" (2^n)-1 in Rule 110 cellular automaton, as rules 110 and 124 are mirror images of each other.

Crossrefs

Cf. A269176 (indices of zeros), A269177 (of nonzeros), A269178 (of ones).

Programs

  • Scheme
    (definec (A269175 n) (let loop ((p 0) (s 0)) (cond ((> p n) s) (else (loop (+ 1 p) (+ s (if (= n (A269174 p)) 1 0))))))) ;; Very straightforward and very slow.
    ;; Somewhat optimized version:
    (definec (A269175 n) (if (zero? n) 1 (let ((nwid-1 (- (A000523 n) 1))) (let loop ((p (if (< n 2) 0 (A000079 nwid-1))) (s 0)) (cond ((> (A000523 p) nwid-1) s) (else (loop (+ 1 p) (+ s (if (= n (A269174 p)) 1 0)))))))))

A269176 Numbers not present in A269174; indices of zeros in A269175.

Original entry on oeis.org

1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 21, 23, 25, 26, 29, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 45, 46, 49, 50, 52, 53, 57, 58, 61, 64, 65, 66, 68, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 92, 93, 97, 98, 100, 101, 104, 105, 106, 109, 113, 114, 116, 117, 121, 122, 125, 128, 129
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2016

Keywords

Comments

Numbers n for which there is no any k such that A269174(k) = n.
These are binary representations (shown in decimal) of Garden of Eden patterns in Wolfram's Rule 124 cellular automaton if infinite predecessors are forbidden.

Crossrefs

Cf. A269177 (complement).

A269178 Numbers that have a unique finite predecessor in Wolfram's Rule 124 cellular automaton; numbers n for which A269175(n) = 1.

Original entry on oeis.org

0, 3, 6, 7, 11, 12, 14, 15, 19, 22, 24, 27, 28, 30, 35, 38, 44, 47, 48, 51, 54, 55, 56, 60, 67, 70, 76, 79, 88, 91, 94, 95, 96, 99, 102, 103, 107, 108, 110, 111, 112, 119, 120, 131, 134, 140, 143, 152, 155, 158, 159, 176, 179, 182, 183, 187, 188, 190, 191, 192, 195, 198, 199, 203, 204, 206, 207, 211, 214, 216, 219
Offset: 0

Views

Author

Antti Karttunen, Feb 22 2016

Keywords

Comments

The indexing starts from zero, because a(0) = 0 is a special case in this sequence. (Zero is the only number which is its own predecessor).

Crossrefs

Subsequence of A269177.
Showing 1-4 of 4 results.