A269253 Smallest prime in the sequence s(k) = n*s(k-1) - s(k-2), with s(0) = 1, s(1) = n + 1 (or -1 if no such prime exists).
2, 3, 11, 5, 29, 7, -1, 71, 89, 11, 131, 13, 181, -1, 239, 17, 5167, 19, 379, 419, 461, 23, -1, 599, 251894449, 701, 20357, 29, 25171, 31, 991, 36002209323169, 47468744103199, -1, 1259, 37, 2625505273, 1481, 1559, 41, 1721, 43, 150103799, 1979, 2069, 47, -1, 2351, 287762399
Offset: 1
Keywords
Links
- Hans Havermann, Table of n, a(n) for n = 1..300
- C. K. Caldwell, Top Twenty page, Lehmer number
- Andrew N. W. Hone, et al., On a family of sequences related to Chebyshev polynomials, arXiv:1802.01793 [math.NT], 2018.
- Wikipedia, Lehmer number
Crossrefs
Programs
-
Magma
lst:=[]; for n in [1..49] do if n gt 2 and IsSquare(n+2) then Append(~lst, -1); else a:=n+1; c:=1; if IsPrime(a) then Append(~lst, a); else repeat b:=n*a-c; c:=a; a:=b; until IsPrime(a); Append(~lst, a); end if; end if; end for; lst;
-
Mathematica
terms = 172; kmax = 120; a[n_] := Module[{s, k}, s[k_] := s[k] = n s[k-1] - s[k-2]; s[0] = 1; s[1] = n+1; For[k = 1, k <= kmax, k++, If[PrimeQ[s[k]], Return[s[k]]]]]; Array[a, terms] /. Null -> -1 (* Jean-François Alcover, Aug 30 2018 *)
Formula
If n is prime then a(n-1) = n.
Comments