cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A269348 Kolakoski-(1,6) sequence: a(n) is length of n-th run.

Original entry on oeis.org

1, 6, 6, 6, 6, 6, 6, 1, 1, 1, 1, 1, 1, 6, 6, 6, 6, 6, 6, 1, 1, 1, 1, 1, 1, 6, 6, 6, 6, 6, 6, 1, 1, 1, 1, 1, 1, 6, 1, 6, 1, 6, 1, 6, 6, 6, 6, 6, 6, 1, 1, 1, 1, 1, 1, 6, 6, 6, 6, 6, 6, 1, 1, 1, 1, 1, 1, 6, 6, 6, 6, 6, 6, 1, 1, 1, 1, 1, 1, 6, 1, 6, 1, 6, 1, 6, 6
Offset: 1

Views

Author

Vincenzo Librandi, Feb 25 2016

Keywords

Comments

16666661111, 1666666111111, 1666666111111666666111111666666111111616161666666111111666666111 are primes.

Crossrefs

Cf. similar sequences listed in A269268.

Programs

  • Mathematica
    seed = {1, 6}; w = {}; i = 1; Do[w = Join[w, Array[seed[[Mod[i - 1, Length[seed]] + 1]] &, If[i > Length[w], seed, w][[i]]]]; i++, {n, 250}]; w (* from Ivan Neretin in similar sequences *)

A269349 Kolakoski-(1,7) sequence: a(n) is length of n-th run.

Original entry on oeis.org

1, 7, 7, 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7, 7, 7, 1, 7, 1, 7, 1, 7, 1, 7, 7, 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 7, 7
Offset: 1

Views

Author

Vincenzo Librandi, Feb 26 2016

Keywords

Comments

17, 1777, 1777777711111117777777 are primes.

Crossrefs

Cf. similar sequences listed in A269268.

Programs

  • Mathematica
    seed = {1, 7}; w = {}; i = 1; Do[w = Join[w, Array[seed[[Mod[i - 1, Length[seed]] + 1]]&, If[i > Length[w], seed, w][[i]]]]; i++, {n, 42}]; w

A269350 Kolakoski-(1,8) sequence: a(n) is length of n-th run.

Original entry on oeis.org

1, 8, 8, 8, 8, 8, 8, 8, 8, 1, 1, 1, 1, 1, 1, 1, 1, 8, 8, 8, 8, 8, 8, 8, 8, 1, 1, 1, 1, 1, 1, 1, 1, 8, 8, 8, 8, 8, 8, 8, 8, 1, 1, 1, 1, 1, 1, 1, 1, 8, 8, 8, 8, 8, 8, 8, 8, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 8, 8, 8, 8, 8, 8, 8, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Vincenzo Librandi, Feb 26 2016

Keywords

Comments

188888888111111118888888811111111 is prime.

Crossrefs

Cf. similar sequences listed in A269268.

Programs

  • Mathematica
    seed = {1, 8}; w = {}; i = 1; Do[w = Join[w, Array[seed[[Mod[i - 1, Length[seed]] + 1]]&, If[i > Length[w], seed, w][[i]]]]; i++, {n, 42}]; w

A269351 Kolakoski-(1,9) sequence: a(n) is length of n-th run.

Original entry on oeis.org

1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 9, 1, 9
Offset: 1

Views

Author

Vincenzo Librandi, Mar 02 2016

Keywords

Comments

19, 199, 1999, 199999, 19999999, 1999999999111111111999999999111111111999999999 are primes.

Crossrefs

Cf. similar sequences listed in A269268.

Programs

  • Mathematica
    seed = {1, 9}; w = {}; i = 1; Do[w = Join[w, Array[seed[[Mod[i - 1, Length[seed]] + 1]]&, If[i > Length[w], seed, w][[i]]]]; i++, {n, 42}]; w

A269352 Kolakoski-(1,10) sequence: a(n) is length of n-th run.

Original entry on oeis.org

1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1, 1, 1
Offset: 1

Views

Author

Vincenzo Librandi, Mar 02 2016

Keywords

Comments

No prime number with the union of many terms.

Crossrefs

Cf. similar sequences listed in A269268.

Programs

  • Mathematica
    seed = {1, 10}; w = {}; i = 1; Do[w = Join[w, Array[seed[[Mod[i - 1, Length[seed]] + 1]]&, If[i > Length[w], seed, w][[i]]]]; i++, {n, 42}]; w
Showing 1-5 of 5 results.